SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore — 641 107

An Autonomous Institution

Accredited by NBA — AICTE and Accredited by NAAC — UGC with ‘A’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

COURSE NAME : 23ITT101- PROBLEM SOLVING & C PROGRAMMING

| YEAR /| SEMESTER

Unit V — STRUCTURE AND UNION
Topic : Structures within Structures - Union

SNSCE/ Al&DS/ AP [Dr . N. ABIRAMI

— LW
S
LLTTITITIONTS

NS TS

Topics Covered

« Structures and Unions:
» Structure Initialization
» Array of Structures
» Array within Structures
» Structures with Structures

» Unions

SNSCE/ Al&DS/ AP [Dr . N. ABIRAMI

Structure Initialization

* The Initialization must be done only in the declaration of the actual

variables.

« Compile time initialization of a structure variable have the following

elements.
1.The keyword struct.
2. The structure tag name.

3.The name of a variable to be declared.

SNSCE/ Al&DS/ AP [Dr . N. ABIRAMI

Structure Initialization

4. The assignment operator =

5. A set of values for the members of a structure

variable, separated by commas and enclosed in the

braces.

6. A terminating semicolon.

SNSCE/ Al&DS/ AP [Dr . N. ABIRAMI

Structure Initialization

« Another method for structure initialization:
main()

{

struct student

{

Int rollno;

float marks;

¥

struct student student 1= {101, 90},
struct student student 2 = { 102, 80},

SNSCE/ Al&DS/ AP [Dr . N. ABIRAMI

Structure Initialization

RULES:
« We cannot initialize individual member inside the structure template.
 Itis permitted to have a partial initialization.

« Here we can initialize only the first few members and leave the

remaining blank. The uninitialized members should be only at the end of
the list.

SNSCE/ Al&DS/ AP [Dr . N. ABIRAMI

Structure Initialization

 The uninitialized members will be assigned default values as follows.
— Zero for integer and floating point numbers

— “\0’ for characters and strings.

SNSCE/ Al&DS/ AP [Dr . N. ABIRAMI

Copying and Comparing Structure Variables

« Two variables of the same structure type can be copied the
same way as ordinary variables.

« Example:
personl = personz;
person2 = personl,;

« C does not permit any logical operation on structure
variables.

* In case we need to compare them, we may do so by
comparing members individually.

SNSCE/ Al&DS/ AP [Dr . N. ABIRAMI

Operations on individual members

« The individual members are identified using the member operator, the
dot.

A member with the dot operator along with its structure variable can
be treated like any other variable name and therefore can be

manipulated using expressions and operators.

SNSCE/ Al&DS/ AP [Dr . N. ABIRAMI

Operations on individual members

 Apply increment and decrement operators to numeric type

members.

« The precedence of the member operator is higher than all
arithmetic and relational operators and therefore no parentheses

are required.

SNSCE/ Al&DS/ AP [Dr . N. ABIRAMI

Array of Structures

In C Programming, structures are useful to group different data types to

organize the data in a structural way.
And arrays are used to group the same data type values.

For example, to store employee details such as name, id, age, address, and

salary.

We usually group them as employee structure with the members mentioned

above.

We can create the structure variable to access or modify the structure

members

SNSCE/ Al&DS/ AP [Dr . N. ABIRAMI

Array of Structures

Syntax

struct struct-name

{

datatype varl;

datatype varz;

____________________ datatype varN;
%

struct struct-name obj [size |;

Array of Structures

[* Array of Structures in C Initialization */
struct Employee

{

int age;

char name[50];

int salary;

}

Employees[4] = { {25, "Suresh", 25000}, {24, "Tutorial", 28000},
{22, "Gateway", 35000}, {27, "Mike", 20000} };

SNSCE/ Al&DS/ AP [Dr . N. ABIRAMI

Array of Structures

#include<stdio.h>

struct Point

{

int X, y;

I3

int main()

{

/l Create an array of structures
struct Point arr[10];

/[Access array members
arr[0].x = 10;

arr[0].y = 20;

printf("%d %d", arr[0].x, arr[0].y);
return O;

}

SNSCE/ Al&DS/ AP [Dr . N. ABIRAMI

Array of Structures

#include<stdio.h>

struct Employee

{

char ename[10];

int sal;

h

struct Employee emp[5];
inti, j;

void ask()

{

for(i=0;i < 3;i++)

{

printf("\nEnter %dst Employee record:\n", i+1);
printf("\nEmployee name:\t");
scanf("%s", empl[i].ename);
printf("\nEnter Salary:\t");
scanf("%d", &empli].sal);

}

printf("\nDisplaying Employee
record:\n");
for(i=0;i<3;i++)

{

printf("\nEmployee name is %s",
emp[i].ename);

printf("\nSalary is %d",
empli].sal);

}
}

int main()

{
ask();

}

SNSCE/ Al&DS/ AP [Dr . N. ABIRAMI

Array within Structures

Sometimes, arrays may be the member within structure, this

Is known as arrays within structure.

Accessing arrays within structure is similar to accessing

other members

Purpose of Array within Structure

When we want to store a string value, then we have to go

for array within structure.

Because name comes under character data type alone,

thus array is capable of storing data of same data type.
SNSCE/ Al&DS/ AP / Dr . N. ABIRAMI

Array within Structures

* Syntax

struct struct-name

{

datatype varl; // normal variable
datatype array [size]; /] array variable

datatype varN;
I

struct struct-name obj;

Array within Structures

#include <stdio.h>

int main()

{

struct student {

char name[30];

int rollno;

} stud;

printf ("Enter your RolINo : ");
scanf ("%d",&stud.rollno);
printf ("\nEnter your Name : ");
scanf ("%s", stud.name);
printf ("\nRolINo : %d\n Name : %s", stud.rollno, stud.name);
return O;

}

SNSCE/ Al&DS/ AP [Dr . N. ABIRAMI

Array within Structures

#include <stdio.h>

inti;

struct student {

char name[30];

int rollno;

} stud[3];

int main()

{

for(i=0; i<3; i++)

{

printf ("\nEnter your RolINo : ");
scanf ("%d",&stud[i].rollno);
printf ("\nEnter your Name : ");
scanf ("%s", stud[i].name);

}

printf("\nList of all records");
for (i=0; i<3; i++)

{

printf ("\nRolINo : %d\n Name : %s", stud]i].rolino, stud[i].name);

}

return O; }

WIS IONTS

Array within Structures

#include<stdio.h>

struct Student

{

int Roll;

char Name[25];

int Marks[3]; //Statement 1 : array of marks
int Total;

float Avg;

h

int main()

{

inti;

struct Student S;

printf("\n\nEnter Student Roll :);
scanf("%d",&S.Roll);

printf("\n\nEnter Student Name : ");
scanf("%s",S.Name),

S.Total = 0;
for(i=0;i<3;i++)
{

printf("\n\nEnter Marks %d : ",i+1);
scanf("%d",&S.MarksJi]);

S.Total = S.Total + S.Marksi];
}

S.Avg = S.Total / 3;
printf("\nRoll : %d",S.Roll);
printf("\nName : %s",S.Name);
printf("\nTotal : %d",S.Total);
printf("\nAverage : %f",S.AvQ);

}

VST

Structures within Structures

In C, a structure declaration can be placed inside another
structure. This is also known as nesting of structure.

The declaration is same as the declaration of data type in
structure.

Structure within structure (or) nesting of structure is used
to create complex records.

There are two methods to declare a structure within structure.
Programmers can use either one method to declare structure
within structure.

— Embedded Structure Declaration

— Two Separate Structure Declaration

Structures within Structures

When a structure contains another structure, it is called

nested structure.

For example, two structures named Address and

Employee.

To make Address nested to Employee, we have to define
Address structure before and outside Employee structure
and create an object of Address structure inside Employee

structure.

SNSCE/ Al&DS/ AP [Dr . N. ABIRAMI

Structures within Structures

e Syntax

struct structurel

};

struct structurel obj;

Structure within Structure

#include <stdio.h>
int main()
{
struct student {
char name[30];
struct avg {
int subl, sub?2, sub3;
float average;
ravgl;
2
struct student stud1;
printf("Enter the Name of the student ");
scanf("%s", studl.name);
printf("\nEnter the marks of the student");
scanf("%d %d %d ", &studl.avgl.subl, &studl.avgl.sub2, &studl.avgl.sub3);
studl.avgl.average = (studl.avgl.subl + studl.avgl.sub2 + studl.avgl.sub3)/3;
printf("\n------- Student Details------- \n ");
printf("%s", stud1l.name);

printf("\nsubl: %d \n sub2: %d \n sub3: %d ", studl.avgl.subl, studl.avgl.sub2,
studl.avgl.sub3);

printf("\n Average: %f ", studl.avgl.average);
return O;

}

Structures with Structures

Note:

« The above program uses Embedded type

declaration. Structure avg is defined within the

structure student.

VST

Structures with Structures

#include <stdio.h>
int main()

{

struct avg{

intsubl, sub2, sub3;
float average;

}avgl;

struct student{

char name[30];
struct avg avgl,

|3
struct student studl;

printf("Enter the Name of the student ");

scanf("%s", studl.name);

printf("\nEnter the marks of the student ");

scanf("%d %d %d ", &studl.avgl.subl, &studl.avgl.sub2, &studl.avgl.sub3);
studl.avgl.average = (studl.avgl.subl + studl.avgl.sub2 + studl.avgl.sub3)/3;
printf("\n------- Student Details------- \n ");

printf("%s",studl.name);

printf("\nsub1 : %d \n sub2: %d \n sub3: %d ",studl.avgl.subl, studl.avgl.sub2,
studl.avgl.sub3);

printf("\nAverage : %f %", studl.avgl.average);
return O;

}

Structures with Structures

Note:

« The above program uses two structure declaration
method.

e Structure avg is defined outside the structure
student.

SNSCE/ Al&DS/ AP [Dr . N. ABIRAMI

Structures with Structures

#include<stdio.h>

struct Address

char HouseNo[25];
char City[25];
char PinCode[25];

h

struct Employee

{

int Id;

char Name[25];
float Salary;

struct Address Add;

h

int main()

{

inti;

struct Employee E;

printf("\n\tEnter Employee Id : ");
scanf("%d",&E.Id);

printf("\n\tEnter Employee Name : ");
scanf("%s" ,E.Name);

printf("\n\tEnter Employee Salary : ");
scanf("%f",&E.Salary);

printf("\n\tEnter Employee House No : ");
scanf("%s" ,E.Add.HouseNo);

printf("\n\tEnter Employee City : ");
scanf("%s" ,E.Add.City);

printf("\n\tEnter Employee House No : ");
scanf("%s" ,E.Add.PinCode);

printf("\nDetails of Employees");
printf("\n\tEmployee Id : %d",E.Id);
printf("\n\tEmployee Name : %s" ,E.Name);
printf("\n\tEmployee Salary : %f" ,E.Salary);
printf("\n\tEmployee House No :

%s" ,E.Add.HouseNo0);

printf("\n\tEmployee City : %s" ,E.Add.City);
printf("\n\tEmployee House No :

%s" ,E.Add.PinCode);

}

UNION

« A union is a user-defined type similar to structures in

c except for one key difference.

« Structure allocate enough space to store all its members
whereas unions allocate the space to store only the

largest member.

SNSCE/ Al&DS/ AP [Dr . N. ABIRAMI

NS TS

UNION

* Syntax — Union

union unionname

{

data type memberl,;
data type member2;

} variablel, variable?;

Structure

struct Emp
{

charX; //sizelbyte
floatY; //siedbyte

ie;

||}(| LY

/?

5 bytes € (structure variable)

Unions

union Emp

{
charX;

floatY;
ie;

Memory Sharing

e

X&Y

L |
C E[uninnvariable]ﬁ

4 bytes allocates storage
equal to largest one

Difference Between Structure and Union

#include <stdio.h>

int main()

{

/[structures declartion

struct sample{

double d1; //occupies 8 bytes in memory
float f1; //occupies 4 bytes in memory
¥si;

//Union declartion

union samp{

double d2; //occupies 8 bytes in memory
float f2; //occupies 4 bytes in memory
i,

printf("\nSize of Structure : %ld ",sizeof(sl));
printf("\nSize of Union : %ld",sizeof(ul));
return O;

}

SNSCE/ Al&DS/ AP [Dr . N. ABIRAMI

NS TS

UNION

« Accessing a Union Member

« A union member can be accessed similar to structure member, that by using

(.)dot or period operator.

» The general format is as follows,

unionvariablename.membername;

SNSCE/ Al&DS/ AP [Dr . N. ABIRAMI

NS TS

UNION

#include <stdio.h>

int main()

{

/Istructures declartion
struct sample{

int a;

int b;

}s1;

//Union declartion

union samp{

int c;

int d;

i,

sl.a=10;

sl.b = 20;

printf("\nThe Structure member values a and b are : %d %d ", s1. a, s1.b);
ul.c = 30;

ul.d =40;

printf("\nThe Union member values c and d are : %d %d ", ul. c, ul.d);
return O;

}

UNION

#include <stdio.h>
#include <string.h>
union Data {

inti;

float f;

char str[20];

3

int main() {
union Data data;

data.i = 10;
data.f = 220.5;
strcpy(data.str, "C Programming");

printf("data.i : %d\n", data.i);
printf("data.f : %f\n", data.f);
printf("data.str : %s\n", data.str);

return O;

}

UNION

* When the above code is compiled and executed, it produces the following result:

data.i : 1917853763
data.f4122360580327794860452759994368.000000
data.str : C Programming

* Here, the values of i and f members of union got corrupted because the final
value assigned to the variable has occupied the memory location and this is the

reason that the value of str member is getting printed very well.

SNSCE/ Al&DS/ AP [Dr . N. ABIRAMI

#include <stdio.h>
#include <string.h>
union Data {

inti;

float f;

char str[20];

|3

int main() {
union Data data;

data.i = 10;

printf("data.i : %d\n", data.i);

data.f = 220.5;

printf("data.f : %f\n", data.f);

UNION

Qutput:
data.i : 10

data.f : 220.500000
data.str : C Programming

strcpy(data.str, "C Programming");

printf("data.str : %s\n", data.str);

return O;

}

SNSCE/ Al&DS/ AP [Dr . N. ABIRAMI

VST

Summary

A structure variable declaration is similar to the declaration
of variables of any other data type.

The initialization must be done only in the declaration of the

actual variables.

We can access and assign values to the members of a

structure in a many different ways.

A union is a user-defined type similar to structures in
c except for it allocate the space to store only the largest

member.

SNSCE/ Al&DS/ AP [Dr . N. ABIRAMI

UISTITYTIONTS

SNSCE/ Al&DS/ AP [Dr . N. ABIRAMI

