
SNS COLLEGE OF ENGINEERING
Kurumbapalayam (Po), Coimbatore – 641 107

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE NAME : 23ITT101 PROBLEM SOLVING AND C PROGRAMMING

I YEAR /II SEMESTER

Unit 4- FUNCTIONS AND POINTERS

Topic 3: Pointers - Definition – Initialization

Brain Storming

1. How to access memory location?

• Hint: int a=5;

• Single storage location is alloted for 5 in a variable “a”.

• How to access memory location?

12/16/2024 Pointers/problem solving and c programming/Dr.K.Periyakaruppan/CSE/SNSCE 2/22

Pointer

• The pointer in C language is a variable which stores the address of another

variable.

• This variable can be of type int, char, array, function, or any other pointer.

• The size of the pointer depends on the architecture.

• However, in 32-bit architecture the size of a pointer is 2 byte.

12/16/2024 Pointers/problem solving and c programming/Dr.K.Periyakaruppan/CSE/SNSCE 3/22

Example

• int *a;//pointer to int

• char *c;//pointer to char

12/16/2024 Pointers/problem solving and c programming/Dr.K.Periyakaruppan/CSE/SNSCE 4/22

Pointer Operator

Operator Operator Name Purpose

* Value at Operator
Gives Value stored at
Particular address

& Address Operator Gives Address of Variable

12/16/2024 Pointers/problem solving and c programming/Dr.K.Periyakaruppan/CSE/SNSCE 5/22

Example program

#include<stdio.h>

int main()

{

int number=50;

int *p;

p=&number; // or int *p=&number

printf("Address of p variable is %x \n",p);

printf("Value of p variable is %d \n",*p);

return 0;

}

OUTPUT:

Address of p variable is fff4

Value of p variable is 50

12/16/2024 Pointers/problem solving and c programming/Dr.K.Periyakaruppan/CSE/SNSCE 6/22

/* Sum of two integers using pointers*/

#include <stdio.h>

void main()

{

int first, second, *p, *q, sum;

printf("Enter two integers to add\n");

scanf("%d%d", &first, &second);

p = &first;

q = &second;

sum = *p + *q;

printf("Sum of entered numbers =

%d\n",sum);

}

12/16/2024 Pointers/problem solving and c programming/Dr.K.Periyakaruppan/CSE/SNSCE 7/22

12/16/2024 Pointers/problem solving and c programming/Dr.K.Periyakaruppan/CSE/SNSCE 8/22

Pointer Flexibility
Pointers are flexible. We can make the same pointer to point to different data variables in different

statements.

Example;

int x, y, z, *p;

.

p = &x;

.

p = &y;

.

p = &z;

.

We can also use different pointers to point to the same data variable. Example;

int x;

int *p1 = &x;

int *p2 = &x;

int *p3 = &x;

.

.

With the exception of NULL and 0, no other constant value can be assigned to a pointer variable. For

example, the following is wrong:

int *p = 5360; / *absolute address */

NULL Pointer

• A pointer that is not assigned any value but NULL is known as the NULL pointer.

• If you don't have any address to be specified in the pointer at the time of declaration, you

can assign NULL value. int *p=NULL;

• With the exception of NULL and 0, no other constant value can be assigned to a pointer

variable.

12/16/2024 Pointers/problem solving and c programming/Dr.K.Periyakaruppan/CSE/SNSCE 9/22

ACCESSING A VARIABLE THROUGH ITS POINTER

12/16/2024 Pointers/problem solving and c programming/Dr.K.Periyakaruppan/CSE/SNSCE 10/22

void main() {

int x, y;

int *ptr;

x = 10;

ptr = &x;

y = *ptr;

printf(“Value of x is %d\n\n”,x);

printf(“%d is stored at addr %u\n”, x, &x);

printf(“%d is stored at addr %u\n”, *&x, &x);

printf(“%d is stored at addr %u\n”, *ptr, ptr);

printf(“%d is stored at addr %u\n”, ptr, &ptr);

printf(“%d is stored at addr %u\n”, y, &y);

*ptr = 25;

printf(“\nNow x = %d\n”,x);

}

Output:

Value of x is 10

10 is stored at addr 4104

10 is stored at addr 4104

10 is stored at addr 4104

4104 is stored at addr 4106

10 is stored at addr 4108

Now x = 25

Pointer Arithmetic

• Following arithmetic operations are possible on the pointer in C

language:

• Increment

• Decrement

• Addition

• Subtraction

• Comparison

12/16/2024 Pointers/problem solving and c programming/Dr.K.Periyakaruppan/CSE/SNSCE 11/22

Incrementing Pointer in C

• If we increment a pointer by 1, the pointer will start pointing to the

immediate next location.

• This is somewhat different from the general arithmetic since the value

of the pointer will get increased by the size of the data type to which the

pointer is pointing.

• The Rule to increment the pointer is given below:

• new_address= current_address + i * size_of(data type)

12/16/2024 Pointers/problem solving and c programming/Dr.K.Periyakaruppan/CSE/SNSCE 12/22

Conti…

Where i is the number by which the pointer get increased.

32-bit:

For 32-bit architecture, it will be incremented by 2 bytes.

64-bit:

For 64-bit architecture, it will be incremented by 4 bytes.

12/16/2024 Pointers/problem solving and c programming/Dr.K.Periyakaruppan/CSE/SNSCE 13/22

Let's see the example of incrementing pointer variable on 64-
bit architecture.

#include<stdio.h>

int main(){

int number=50;

int *p;//pointer to int

p=&number;//stores the address of number variable

printf("Address of p variable is %u \n",p);

p=p+1;

printf("After increment: Address of p variable is %u \n",p); // in our case,

p will get incremented by 4 bytes.

return 0;

}

12/16/2024 Pointers/problem solving and c programming/Dr.K.Periyakaruppan/CSE/SNSCE 14/22

Output

• Address of p variable is 3214864300

• After increment: Address of p variable is 3214864304

• This is similar for Decrementing Pointer

• Address of p variable is 3214864300

• After Decrement: Address of p variable is 3214864296

12/16/2024 Pointers/problem solving and c programming/Dr.K.Periyakaruppan/CSE/SNSCE 15/22

// C Program to illustrare pointer comparision

#include <stdio.h>

void main()

{

// declaring array

int arr[5];

// declaring pointer to array name

int* ptr1 = &arr;

// declaring pointer to first element

int* ptr2 = &arr[0];

if (ptr1 == ptr2) {

printf("Pointer to Array Name and First Element are Equal.");

}

else {

printf("Pointer to Array Name and First Element are not Equal.");

}

}
Output:

Pointer to Array Name and First Element are Equal.

12/16/2024 Pointers/problem solving and c programming/Dr.K.Periyakaruppan/CSE/SNSCE 16/22

// C program to illustrate Subtraction of two pointers

#include <stdio.h>

void main()

{

int x = 6; // Integer variable declaration

int y = 4;

// Pointer declaration

int *ptr1, *ptr2;

ptr1 = &y; // stores address of y

ptr2 = &x; // stores address of x

printf(" ptr1 = %u, ptr2 = %u\n", ptr1, ptr2); // %p gives an hexa-decimal value,

// We convert it into an unsigned int value by using %u

// Subtraction of ptr2 and ptr1

x = ptr1 - ptr2;

printf("Subtraction of ptr2 from ptr1 is %d\n", x);

}

Output:

ptr1 = 2715594428, ptr2 = 2715594424

Subtraction of ptr2 from ptr1 is 1

12/16/2024 Pointers/problem solving and c programming/Dr.K.Periyakaruppan/CSE/SNSCE 17/22

Pointer to Pointer / Double Pointer

• A pointer to a pointer is a form of multiple indirection, or a chain of pointers.
• Normally, a pointer contains the address of a variable.
• When we define a pointer to a pointer, the first pointer contains the address of the

second pointer, which points to the location that contains the actual value as
shown below.

12/16/2024 Pointers/problem solving and c programming/Dr.K.Periyakaruppan/CSE/SNSCE 18/22

Pointers and arrays

Example 1: Pointers and Arrays

12/16/2024 Pointers/problem solving and c programming/Dr.K.Periyakaruppan/CSE/SNSCE 19/22

int myNumbers[4] = {25, 50, 75, 100};

int *ptr = myNumbers;

int i;

for (i = 0; i < 4; i++)

{

printf("%d\n", *(ptr + i));

}

Result:

25

50

75

100

int myNumbers[4] = {25, 50, 75, 100};

// Change the value of the first element to 13

*myNumbers = 13;

// Change the value of the second element to 17

*(myNumbers +1) = 17;

// Get the value of the first element

printf("%d\n", *myNumbers);

// Get the value of the second element

printf("%d\n", *(myNumbers + 1));

Result:

13

17

Traversing/Accessing array using pointers

12/16/2024 Pointers/problem solving and c programming/Dr.K.Periyakaruppan/CSE/SNSCE 20/22

12/16/2024 Pointers/problem solving and c programming/Dr.K.Periyakaruppan/CSE/SNSCE 21/22

#include <stdio.h>

// Function to sort the numbers using pointers

void sort(int n, int* ptr)

{

int i, j, t;

// Sort the numbers using pointers

for (i = 0; i < n; i++) {

for (j = i + 1; j < n; j++) {

if (*(ptr + j) < *(ptr + i)) {

t = *(ptr + i);

*(ptr + i) = *(ptr + j);

*(ptr + j) = t;

}

}

}

// print the numbers

for (i = 0; i < n; i++)

printf("%d ", *(ptr + i));

}

int main()

{

int n = 5;

int arr[] = { 0, 23, 14, 12, 9 };

sort(n, arr);

return 0;

}

OUTPUT:

0 9 12 14 23

References

Thank You

1. Reema Thareja, “Programming in C”, Oxford University Press, Second

Edition, 2016

12/16/2024 Pointers/problem solving and c programming/Dr.K.Periyakaruppan/CSE/SNSCE 22/22

