
SNS COLLEGE OF ENGINEERING
Kurumbapalayam (Po), Coimbatore – 641 107

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A’ Grade

Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA

SCIENCE

COURSE NAME : 23ITT101- PROBLEM SOLVING & C PROGRAMMING

I YEAR /I SEMESTER

Unit IV – FUNCTIONS AND POINTERS

Topic : Pointer - Arithmetic

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

18CSS26 & ARTIFICIAL INTELLIGENCE

Topics Covered

• Pointer Arithmetic

✓ Increment and Decrement of a Pointer

✓ Addition and Subtraction of Integer to Pointer

✓ Subtraction of Pointers

✓ Comparison of Pointers

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

18CSS26 & ARTIFICIAL INTELLIGENCE

Increment and Decrement of a Pointer

• Increment : It is a condition that also comes under addition. When a

pointer is incremented, it actually increments by the number equal to

the size of the data type for which it is a pointer.

Example:

If an integer pointer that stores address 1000 is incremented, then it

will increment by 4(size of an int), and the new address will point

to 1004. While if a float type pointer is incremented then it will

increment by 4(size of a float) and the new address will be 1004.

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

18CSS26 & ARTIFICIAL INTELLIGENCE

Increment and Decrement of a Pointer

• Decrement: It is a condition that also comes under subtraction.

When a pointer is decremented, it actually decrements by the number

equal to the size of the data type for which it is a pointer.

Example:

If an integer pointer that stores address 1000 is decremented, then it

will decrement by 4(size of an int), and the new address will point

to 996. While if a float type pointer is decremented then it will decrement

by 4(size of a float) and the new address will be 996.

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

18CSS26 & ARTIFICIAL INTELLIGENCE

Increment and Decrement of a Pointer

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

18CSS26 & ARTIFICIAL INTELLIGENCEIncrement and Decrement of a Pointer

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

#include <stdio.h>

// pointer increment and decrement

//pointers are incremented and decremented by the size of the data type they point to

int main()

{

int a = 22;

int *p = &a;

printf("p = %u\n", p); // p = 6422288

p++;

printf("p++ = %u\n", p); //p++ = 6422292 // + 4 bytes

p--;

printf("p-- = %u\n", p); //p-- = 6422288 // -4 bytes

char c = 'a';

char *r = &c;

printf("r = %u\n", r); //r = 6422283

r++;

printf("r++ = %u\n", r); //r++ = 6422284 +1 // 1 byte

r--;

printf("r-- = %u\n", r); //r-- = 6422283 -1 // restored to original value

return 0;

}

Output:

p = 1441900792
p++ = 1441900796
p-- = 1441900792
q = 1441900796
q++ = 1441900800
q-- = 1441900796
r = 1441900791
r++ = 1441900792
r-- = 1441900791

18CSS26 & ARTIFICIAL INTELLIGENCE

Addition of Integer to Pointer

• When a pointer is added with an integer value, the value is first

multiplied by the size of the data type and then added to the pointer.

Example:

Consider the same example as above where the ptr is an integer

pointer that stores 1000 as an address. If we add integer 5 to it using

the expression, ptr = ptr + 5, then, the final address stored in the ptr will

be ptr = 1000 + sizeof(int) * 5 = 1020.

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

18CSS26 & ARTIFICIAL INTELLIGENCE

Subtraction of Integer to Pointer

• When a pointer is subtracted with an integer value, the value is first

multiplied by the size of the data type and then subtracted from the

pointer similar to addition.

Example:

Consider the same example as above where the ptr is an integer

pointer that stores 1000 as an address. If we subtract integer 5 from it

using the expression, ptr = ptr – 5, then, the final address stored in the

ptr will be ptr = 1000 – sizeof(int) * 5 = 980.

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

18CSS26 & ARTIFICIAL INTELLIGENCE

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

18CSS26 & ARTIFICIAL INTELLIGENCE

Subtraction of Two Pointers

• The subtraction of two pointers is possible only when they have the same data

type. The result is generated by calculating the difference between the

addresses of the two pointers and calculating how many bits of data it is

according to the pointer data type. The subtraction of two pointers gives the

increments between the two pointers.

Example:

Two integer pointers say ptr1(address:1000) and ptr2(address:1004) are

subtracted. The difference between addresses is 4 bytes. Since the size of int is

4 bytes, therefore the increment between ptr1 and ptr2 is given by (4/4) = 1.

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

18CSS26 & ARTIFICIAL INTELLIGENCE

Subtraction of Two Pointers

If ptr1 and ptr2 are pointers to elements of the same array:

(address of ptr1)−(address of ptr2)

ptr1 – ptr2 = ---

sizeof(type)

18CSS26 & ARTIFICIAL INTELLIGENCE

Subtraction of Two Pointers

#include <stdio.h>

#include <stddef.h>

int main() {

int arr[] = {10, 20, 30, 40, 50};

int *ptr1 = &arr[2]; // Points to 3rd element (value 30)

int *ptr2 = &arr[0]; // Points to 1st element (value 10)

ptrdiff_t diff = ptr1 - ptr2;

printf("Difference between pointers: %td\n", diff); // Output: 2

return 0;

}

18CSS26 & ARTIFICIAL INTELLIGENCE

Comparison of Pointers

Compare the two pointers by using the comparison operators in C using all

operators in C >, >=, <, <=, ==, !=. It returns true for the valid condition and

returns false for the unsatisfied condition.

• Step 1: Initialize the integer values and point these integer values to the

pointer.

• Step 2: Now, check the condition by using comparison or relational operators

on pointer variables.

• Step 3: Display the output.

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

18CSS26 & ARTIFICIAL INTELLIGENCE

Comparison to NULL

A pointer can be compared or assigned a NULL value irrespective of what is the

pointer type. Such pointers are called NULL pointers and are used in various

pointer-related error-handling methods

// C Program to demonstrate the pointer comparison with NULL value

#include <stdio.h>

int main()

{

int* ptr = NULL;

if (ptr == NULL) {

printf("The pointer is NULL");

}

else {

printf("The pointer is not NULL");

}

return 0;

}

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

Output:

The pointer is NULL

18CSS26 & ARTIFICIAL INTELLIGENCE

Comparison operators on Pointers using an array

Step 1: First, declare the length of an array and array elements.

Step 2: Declare the pointer variable and point it to the first element of an array.

Step 3: Initialize the count_even and count_odd. Iterate the for loop and check

the conditions for the number of odd elements and even elements in an array

Step 4: Increment the pointer location ptr++ to the next element in an array for

further iteration.

Step 5: Print the result.

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

18CSS26 & ARTIFICIAL INTELLIGENCE

Pointer Arithmetic on Arrays

• Pointers contain addresses. Adding two addresses makes no sense because

there is no idea what it would point to. Subtracting two addresses lets you

compute the offset between the two addresses. An array name acts like a

pointer constant. The value of this pointer constant is the address of the first

element.

Example: if an array is named arr then arr and &arr[0] can be used to

reference the array as a pointer.

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

18CSS26 & ARTIFICIAL INTELLIGENCEPointer Arithmetic on Arrays

// C program to illustrate the array traversal using pointers

#include <stdio.h>

int main()

{

int N = 5;

// An array

int arr[] = { 1, 2, 3, 4, 5 };

// Declare pointer variable

int* ptr;

// Point the pointer to first element in array arr[]

ptr = arr;

// Traverse array using ptr

for (int i = 0; i < N; i++) {

// Print element at which ptr points

printf("%d ", ptr[0]);

ptr++;

}

}

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

Output:

1 2 3 4 5

18CSS26 & ARTIFICIAL INTELLIGENCE

Summary

• Pointer is a derived data type and important feature in C.

• Computer’s memory is a sequential collection of storage cells, each

cell commonly known as a byte, has a number called address

associated with it.

• Pointers support dynamic memory management

• Pointer constants - only we can use them to store data values

• Pointer values may change from one run of the program to

another.

• The variable that contains a pointer value called pointer variable.

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

