SNS COLLEGE OF ENGINEERING
Kurumbapalayam (Po), Coimbatore — 641 107

AN AUTONOMOUS INSTITUTION
Approved by AICTE, New Delhi and Affiliated to Anna University, Chennai
PROBLEM SOLVNG & C PROGRAMMNG

Puzzles
1. The Fibonacci Sequence
C
#include <stdio.h>

int main() {
int n, first = 0, second = 1, next, c;

printf("Enter the number of terms: ™);
scanf("%d", &n);

printf("First %d terms of Fibonacci series:\n", n);

for(c=0;c<n;c++) {

if (c<=1)
next =c;
else {

next = first + second;
first = second;
second = next;

printf("%d ", next);
}

return O;

¥

Explanation:

e This code generates the Fibonacci sequence, where each number is the sum of the two
preceding ones (e.g.,0,1,1,2,3,5,8,...).

e The user inputs the desired number of terms.
e The code iterates through the loop, calculating and printing each term of the sequence.

2. Factorial of a Number
C
#include <stdio.h>

int main() {int n, i, factorial = 1;

printf("Enter an integer: ");
scanf("%d", &n);

/I Show error if the user enters a negative integer
if (n<0)
printf("Error! Factorial of a negative number doesn't exist.");

else {
for(i=1;1<=n; ++i) {
factorial *=1;
}
printf("Factorial of %d = %llu", n, factorial);
}
return O,
}
Explanation:

e This code calculates the factorial of a given number.
e The factorial of a non-negative integer n, denoted by n!, is the product of all positive
integers less than or* equal to n.

e The code includes a check for negative input and calculates the factorial using a loop.

3. Prime Number Check
C

intn, i, isPrime = 1;

printf("Enter an integer: "');
scanf("%d", &n);

/1 0 and 1 are not prime numbers

if(n<=1){
isPrime = 0;
}else {
for(i=2;i<=n/2; ++i){
if(n%i==0){
isPrime = 0;
break;
}
}
}
if (isPrime)
printf("%d is a prime number.", n);
else

printf("%d is not a prime number.", n);

return O;

¥

Explanation:

e This code checks if a given number is a prime number (a natural number greater than 1 that
has no positive divisors other than 1 and itself).

o ltiterates from 2 to half of the given number, checking if any number divides evenly.
o Ifany divisor is found, the number is not prime.

4. String Reversal
C

#include <stdio.h>
#include <string.h>

int main() {
char str[100];

printf("Enter a string: ");
scanf("%s", str);

int len = strlen(str);
for(inti=0;i<len/2;i++){
char temp = str[i];
str[i] = str[len -i-1];
str[len - i - 1] = temp;

¥

printf("Reversed string: %s\n", str);

return O;

¥

Explanation:
e This code reverses a given string.

o It iterates through half of the string's length, swapping characters from the beginning and
int data[100], n, i, j, swap;

printf("Enter number of elements: "); scanf("%d", &n);

printf("Enter elements: "); for (i = 0; i < n; i++) { scanf("%d", &data[i]); }
for(iI=0;i<n-1;i++){for(j=0;j<n-i-1;j++) {if (data[j] > data[j + 1]) { swap =
data[j]; data[j] = data[j + 1]; data[j + 1] = swap; } } }

printf("Sorted? Array: "); for (i = 0; i < n; i++) { printf("%d ", data[i]); }

return 0; }

Explanation:

* This code implements the bubble sort algorithm, which repeatedly steps through the list,
compares adjacent elements, and swaps them if they are in the wrong order.

* This process continues until no swaps are needed in an entire pass.

Certainly, let's explore some C pointer puzzles!

1. The Double Pointer Puzzle

\\\C

#include <stdio.h>

int main() {
int x = 10;
int *ptrl = &X;
int **ptr2 = &ptrl;
printf(*Value of x: %d\n", x);
printf(""Value of *ptrl: %d\n", *ptrl);
printf("Value of **ptr2: %d\n", **ptr2);
ptr2 = 20; // What happens here?

printf("Value of x after modification: %d\n", x);

return O;

Explanation:

* This code demonstrates the concept of double pointers.

* “ptrl” is a pointer to the integer "X.
* "ptr2” is a pointer to the pointer “ptrl’.

* The line “**ptr2 = 20;" **does not** change the value of "x". It actually assigns the integer value
20 to the memory location pointed to by “ptrl".

2. The Array of Pointers Puzzle

\\\C

#include <stdio.h>

int main() {
int arr[] = {10, 20, 30, 40};
int *ptr[4];
for (inti=0;i<4;i++){

ptr[i] = &arrl[i];

for(inti=0;i<4;i++){
printf(*"Value at ptr[%d]: %d\n", i, *ptr[i]);

return O;

Explanation:

* This code creates an array of pointers ("ptr’).

* Each element of the "ptr™ array is assigned the address of the corresponding element in the “arr’
array.

* The code then iterates through the “ptr™ array and prints the values pointed to by each pointer.

3. The Function Pointer Puzzle

\\\C

#include <stdio.h>
int add(int a, int b) {

return a + b;

int subtract(int a, int b) {

return a - b;

int main() {

int (*operation)(int, int); // Function pointer declaration

operation = add;

printf("Result of addition: %d\n", operation(5, 3));

operation = subtract;

printf("Result of subtraction: %d\n", operation(5, 3));

return O;

Explanation:

* This code demonstrates the use of function pointers.

* “operation’ is a pointer that can hold the address of a function that takes two integers as arguments
and returns an integer.

* The code assigns the addresses of the "add™ and “subtract™ functions to the “operation™ pointer
and then calls the functions through the pointer.

Key Pointer Concepts:

* **Pointers store memory addresses.**
* **Pointers can be used to access and modify values indirectly.**
* **Pointers can point to any data type, including other pointers.**

* **Eynction pointers allow you to pass functions as arguments to other functions.**

