
Register No.

SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore - 641 107

Approved by AICTE, New Delhi and Affiliated to Anna University, Chennai B.E/B.Tech Degree End Semester Exam, Nov/Dec 2024 – Answer Key

III Semester

B.E-Electrical and Electronics Engineering

23EEB201- Theory of DC Machines and Transformers

Regulations 2023

Duration : 3 Hours **Maximum: 100 Marks**

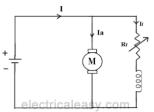
Answer ALL questions

	PART A - (5 X 2 = 10 marks)			
Q.No	Question	Μ	СО	BL
1.	 State the purpose of yoke in a DC machine. Mechanical support : The yoke provides mechanical support for the poles and protects the entire machine from dust and moisture. Magnetic flux : The yoke carries the magnetic flux produced by the poles and acts as a return path for the pole flux. 	2	CO-1	L -1
2.	 What do you mean by armature reaction in a DC machine? Mention its effects. Armature reaction in a DC machine is the impact of the armature's magnetic field on the main field, caused by the interaction between the armature flux and the main magnetic field. It can lead to several operational issues, including: Reduced efficiency: Armature reaction can reduce the efficiency of the machine. Distorted flux patterns: Armature reaction can distort the flux patterns within the machine. Potential damage: If not managed properly, armature reaction can reduce the generated voltage. Reduced voltage: In a DC generator, armature reaction can reduce the generated voltage. 	2	CO-1	L -2
3.	What is the significance of back emf in a DC motor? Back electromotive force (EMF) is important in a DC motor because it regulates the motor's speed, protects it from damage, and improves its efficiency	2	CO-2	L -2
4.	Plot the electrical and mechanical characteristics of DC compound motor.	2	CO-2	L -1
5.	Mention the advantages and disadvantages of Hopkinson's test. Advantages. The various advantages of Hopkinson's test are, The power required for conducting the test is small compared to full load powers of the two machines. Disadvantages. The various disadvantages of Hopkinson's test are, There is difficulty in availability of two identical machines.	2	CO-3	L -1

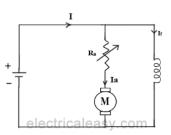
	Summarize the appl	lications of various types of	DC motors.			
6.	Type of Motor Shunt Series Cumulative compound Differential compound	Characteristics Speed is fairly constant and medium starting torque. High starting torque. No load condition is dangerous. Variable speed. High starting torque. No load condition is allowed. Speed increases as load increases.	Applications1. Blowers and fans2. Centrifugal and reciprocating pumps3. Lathe machines4. Machine tools5. Milling machines6. Drilling machines1. Cranes2. Hoists, Elevators3. Trolleys4. Conveyors5. Electric locomotives1. Rolling mills2. Punches3. Shears4. Heavy planers5. Elevators5. Not suitable for any practical applications	2	CO-3	L -2
7.	In a single-phase tra	ansformer, the number of tur ely. The primary side voltage	5	2	CO-4	L -2
8.	Zero winding resis Infinite core perme no magnetizing curr No leakage flux: Th	eability: The core of an idea rent is required to magnetize he entire flux from the prima	ondary windings have zero resistance. al transformer has infinite permeability, so e it. ary winding links with the secondary. losses, so the output power is exactly equal	2	CO-4	L -2
9.	Discuss the reasons Transformers are primarily copper los primarily determine connected load, m	sses (dependent on current) ed by the apparent power	tted in KVA. t-amperes) because their internal losses, and iron losses (dependent on voltage), are (kVA) and not the power factor of the best described by this combined value	2	CO-5	L -2
10.	Define all-day effic All-day efficiency efficiency of	iency. is a term used in electri a transformer output in kWh	ical engineering to describe the overall over a 24-hour period. or 24 hours)	2	CO-5	L -2

PART B - (2 X 13 = 26 marks)						
11.	(a)	(i) Illustrate the construction of a DC Machine with a neat diagram.	8	CO-1	L-2	
		An electromechanical device which can convert direct current (dc) electricity into mechanical energy or mechanical energy into direct current (dc) electricity is known as a DC machine .				
		If the DC machine converts DC electrical energy into mechanical energy, it is known as DC motor . If the machine converts mechanical energy into DC electrical energy, then it is known as a DC generator . Both DC motor and DC generator have the similar construction.				
		A typical DC machine consists of the following major parts –				
		Yoke or Frame Armature Field System Commutator Brushes Bearings				
		The schematic diagram of a DC machine is shown below –				
		pole core armature conductor Figure - DC Machine Construction				
		Yoke or Frame The yoke is the outer frame of the DC machine. It is made up of such materials that have high permeability and high mechanical strength. In practice, the yoke of DC machine is made up of cast steel. The yoke or frame of the DC machine serves the following main purposes – It protects the internal machine parts like armature, windings, field poles, etc. against mechanical damages. The yoke houses the magnetic field system. It provides a low reluctance path to the working magnetic flux. It supports the rotor or armature through bearings.				
		Armature				
		In DC machines (motor or generator), armature is a system of conductors or coils that can rotate freely on the supporting bearings. The working torque and EMF are developed in coils of the armature. The armature consists of two main parts namely, armature core and armature winding .				
		The armature core is a solid cylindrical structure, made up of high permeability thin silicon steel laminations. On the outer periphery of the core slots are cut to carry the armature winding.				
		Field System				
		Field system is the part of a DC machine which produces the working magnetic flux in the machine. It is basically a system of electromagnets which is excited by a DC supply. In case				

 of DC machine, the field system is a stationary part of the machine and it is bolted to the yok or frame of the machine. There are three main parts of a field system in dc machine namely pole core, pole shoes, and field coils. Commutator The commutator is one of the important parts of the DC machine. It is basically mechanic: rectifier. It is a cylindrical shaped device and is made up of copper. The outer periphery of th commutator has V-shaped slots to carry commutator segments. Where, the commutato segments are copper bars inserted in the slots. These segments are insulated from each othe by mica. The commutator is mounted on the shaft of the DC machine on one side of th armature. The armature conductors are connected to the commutator segments with the hel of copper lugs. The commutator performs the following two major functions – In a DC generator, it collects the current from the armature conductor. In a DC motor, supplies the current to the armature conductors. It converts the alternating current of the armature into unidirectional current in the externa circuit with the help of brushes, and <i>vice-versa</i>. Brushes Brushes are used to make an electrical connection with the rotating commutator. These collects 	s l e r r e e p t t l		
(or supply) current from (or to) the moving commutator. Brushes are usually made up of carbon. They are housed in brush holders and are in contact with the commutator surface with the help of spring pressure.	f		
(ii) Compute the emf generated by an 8 Pole, wave connected armature that has 62 conductors and driven at 625 rpm. The fulx per pole is 20 mWb. $ \begin{array}{c} $	5 5	CO-1	L-3
OR (b) (i) Derive the emf equation of a DC generator.	8	CO-1	L-2

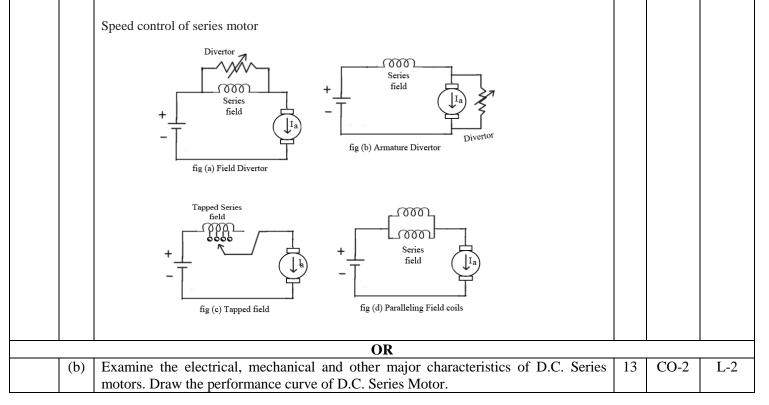

thus, from the above equations $N={^E}_b\,{^{60A}\!/_{P\not\!O Z}}$

but, for a DC motor A, P and Z are constants


Therefore, $N \propto K E_{b/\phi}$ (where, K=constant)

This shows the **speed of a dc motor** is directly proportional to the back emf and inversely proportional to the flux per pole.

Flux control method



Armature control method

Voltage Control Method

- a) Multiple voltage control
- b) Ward-Leonard System

1. Electrical Characteristics:

1. High Starting Torque:

The torque (T) is proportional to the square of the armature current (I_a):

 $T \propto \phi I_a$ and $\phi \propto I_a \Rightarrow T \propto I_a^2$

At low speeds, high currents produce a large torque.

2. Speed-Torque Relationship:

• The speed (N) of the motor is inversely proportional to the flux (ϕ) :

$$N \propto$$

 $\frac{1}{\phi}$

- At high loads (low speed), flux is high, and at light loads, speed increases significantly.
- 3. Current-Voltage Relationship:
 - The motor draws large current during starting, which can be controlled using external resistances.

2. Mechanical Characteristics:

1. Torque-Speed Characteristic:

- At low speeds, the torque is very high, which decreases as speed increases.
- · This makes it ideal for applications requiring high initial torque.

2. Efficiency:

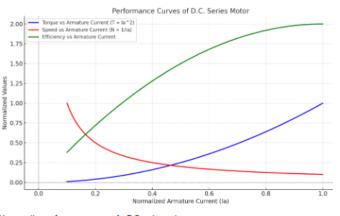
- Efficiency is lower at low speeds due to high I²R losses in the armature.
- It improves as speed increases under load.

3. Mechanical Stress:

 High starting torque can cause mechanical stress on the components like shafts and bearings.

3. Other Major Characteristics:

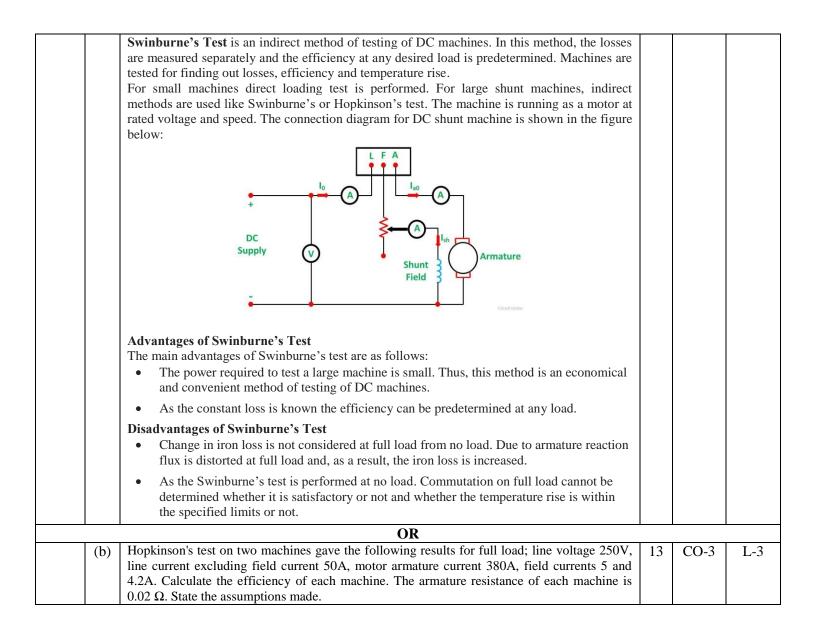
1. No Load Operation:


 A D.C. series motor should never run without a load because at no load, the flux becomes very small, causing the motor speed to increase excessively (runaway condition).

2. Applications:

 Suitable for applications requiring variable speed and high torque, such as electric trains, hoists, and rolling mills.

3. Regulation:


· Poor voltage regulation due to high variation in current with load changes.

Here are the performance curves of a D.C. series motor:

- Torque vs. Armature Current (blue): A parabolic curve showing that torque increases significantly with an increase in armature current.
- Speed vs. Armature Current (red): A hyperbolic curve indicating that speed decreases as armature current increases.
- Efficiency vs. Armature Current (green): A bell-shaped curve showing efficiency rises with current, peaks at an optimal point, and then decreases due to increased losses.

13	(a)	Illustrate the Swinburne's test on a D.C. Motor. What are its advantages and disadvantages?	13	CO-3	L-2

	1	13			
	1	b) $V_L = 2.50V$ $I_L = 50A$			
		$J_a = 3804$			
		$I_{f_{i}} = 5\theta$			
		$\mathcal{H}_{\lambda} = 4 \cdot a$			
		Gts n.			
		$R_{a} = \frac{D}{D} \frac{D}$			
		$\frac{Sol}{76tal current} = \Sigma_{L} + I_{f}$ $= -50 + (5+1+2)$			
		Total current= IL+IP			
		=59.2A			
		Paraso Out = V+ × Motors Ia			
		$= 250 \times 380$ $= 95000 \text{ W}$			
		Annature Circuit 10555 = JRRa			
		mart e accur iosses =1 Pa			
		= (Molex Armatures current) dx 0.0002			
		= (380) 2 0.02			
		=. 2888 W			
		PORONIN = 'Dutput PORONY + IZR lass.			
		= 95000 + 2888			
		=97888 M			
		2 = Privers out X100			
		$=\frac{9500}{97888} \times 100$			
		$\mathcal{D} = 97.$ CM.			
		(i) Derive an expression for the e.m.f. equation of a single-phase transformer. The induced EMF (E) in any winding having (N) number of turns is given by:	8	CO-4	L-2
		The induced EMF (E) in any winding having (N) number of turns is given by:	8	CO-4	L-2
			8	CO-4	L-2
		The induced EMF (E) in any winding having (N) number of turns is given by: $E_{rms}=4,44 imes f imes N imes \Phi_{max}$ Where,	8	CO-4	L-2
		The induced EMF (E) in any winding having (N) number of turns is given by: $E_{rms}=4,44 imes f imes N imes \Phi_{max}$ Where, f $ ightarrow$ frequency Hz	8	CO-4	L-2
		The induced EMF (E) in any winding having (N) number of turns is given by: $E_{rms}=4,44\times f\times N\times \Phi_{max}$ Where, f \rightarrow frequency Hz N \rightarrow number of turns of winding	8	CO-4	L-2
		The induced EMF (E) in any winding having (N) number of turns is given by: $E_{rms} = 4,44 \times f \times N \times \Phi_{max}$ Where, f \rightarrow frequency Hz N \rightarrow number of turns of winding $\Phi \rightarrow$ Flux density in Wb	8	CO-4	L-2
		The induced EMF (E) in any winding having (N) number of turns is given by: $E_{rms}=4,44\times f\times N\times \Phi_{max}$ Where, f \rightarrow frequency Hz N \rightarrow number of turns of winding	8	CO-4	L-2
		The induced EMF (E) in any winding having (N) number of turns is given by: $E_{rms} = 4,44 \times f \times N \times \Phi_{max}$ Where, f \rightarrow frequency Hz N \rightarrow number of turns of winding $\Phi \rightarrow$ Flux density in Wb	8	CO-4	L-2
		The induced EMF (E) in any winding having (N) number of turns is given by: $E_{rms} = 4,44 \times f \times N \times \Phi_{max}$ Where, f \rightarrow frequency Hz N \rightarrow number of turns of winding $\Phi \rightarrow$ Flux density in Wb N1 is the number of turns in the primary winding	8	CO-4	L-2
		The induced EMF (E) in any winding having (N) number of turns is given by: $E_{rms} = 4,44 \times f \times N \times \Phi_{max}$ Where, f frequency Hz N number of turns of winding Φ Flux density in Wb N1 is the number of turns in the primary winding N2 is the number of turns in the secondary winding	8	CO-4	L-2
14	(a)	The induced EMF (E) in any winding having (N) number of turns is given by: $E_{rms} = 4,44 \times f \times N \times \Phi_{max}$ Where, f frequency Hz N number of turns of winding $\Phi \rightarrow$ Flux density in Wb N1 is the number of turns in the primary winding N2 is the number of turns in the secondary winding By Faraday's Law the flux changes from + ϕ m to - ϕ m in half a cycle of 1/2f seconds	8	CO-4	L-2
14	(a)	The induced EMF (E) in any winding having (N) number of turns is given by: $E_{rms} = 4,44 \times f \times N \times \Phi_{max}$ Where, f frequency Hz N number of turns of winding $\Phi \rightarrow Flux$ density in Wb N1 is the number of turns in the primary winding N2 is the number of turns in the secondary winding By Faraday's Law the flux changes from + ϕ m to - ϕ m in half a cycle of 1/2f seconds Emf induced in the primary winding is the E1 $E_1 = -\frac{d\psi}{dt} \dots \dots (1)$	8	CO-4	L-2
14	(a)	The induced EMF (E) in any winding having (N) number of turns is given by: $E_{rms} = 4,44 \times f \times N \times \Phi_{max}$ Where, f frequency Hz N number of turns of winding $\Phi \rightarrow$ Flux density in Wb N1 is the number of turns in the primary winding N2 is the number of turns in the secondary winding By Faraday's Law the flux changes from + ϕ m to - ϕ m in half a cycle of 1/2f seconds Emf induced in the primary winding is the E1	8	CO-4	L-2
14	(a)	The induced EMF (E) in any winding having (N) number of turns is given by: $E_{rms} = 4,44 \times f \times N \times \Phi_{max}$ Where, f frequency Hz N number of turns of winding $\Phi \rightarrow Flux$ density in Wb N1 is the number of turns in the primary winding N2 is the number of turns in the secondary winding By Faraday's Law the flux changes from + ϕ m to - ϕ m in half a cycle of 1/2f seconds Emf induced in the primary winding is the E1 $E_1 = -\frac{d\psi}{dt} \dots \dots (1)$	8	CO-4	L-2
14	(a)	The induced EMF (E) in any winding having (N) number of turns is given by: $E_{rms} = 4,44 \times f \times N \times \Phi_{max}$ Where, f - frequency Hz N - number of turns of winding Φ - Flux density in Wb N1 is the number of turns in the primary winding N2 is the number of turns in the secondary winding By Faraday's Law the flux changes from + ϕ m to - ϕ m in half a cycle of 1/2f seconds Emf induced in the primary winding is the E1 $E_1 = -\frac{d\Psi}{dt} \dots \dots \dots (1)$ Where $\Psi = N1\phi$	8	CO-4	L-2
14	(a)	The induced EMF (£) in any winding having (N) number of turns is given by: $E_{rms} = 4, 44 \times f \times N \times \Phi_{max}$ Where, f frequency Hz N - number of turns of winding $\Phi -$ Flux density in Wb N1 is the number of turns in the primary winding N2 is the number of turns in the secondary winding By Faraday's Law the flux changes from + ϕ m to - ϕ m in half a cycle of 1/2f seconds Emf induced in the primary winding is the E1 $E_1 = -\frac{d\psi}{dt} \dots \dots \dots (1)$ Where $\Psi = N1\phi$ So, (2)	8	CO-4	L-2
14	(a)	The induced EMF (E) in any winding having (N) number of turns is given by: $E_{rms} = 4,44 \times f \times N \times \Phi_{max}$ Where, f - frequency Hz N - number of turns of winding $\phi \rightarrow Flux \text{ density in Wb}$ N1 is the number of turns in the primary winding By Faraday's Law the flux changes from + ϕ m to - ϕ m in half a cycle of 1/2f seconds Emf induced in the primary winding is the E1 $E_1 = -\frac{d\psi}{dt} \dots \dots \dots (1)$ Where $\Psi = N1\phi$ So, (2) $E_1 = -N_1 \frac{d\phi}{dt}$	8	CO-4	L-2
14	(a)	The induced EMF (£) in any winding having (N) number of turns is given by: $E_{rms} = 4, 44 \times f \times N \times \Phi_{max}$ Where, f frequency Hz N - number of turns of winding $\Phi -$ Flux density in Wb N1 is the number of turns in the primary winding N2 is the number of turns in the secondary winding By Faraday's Law the flux changes from + ϕ m to - ϕ m in half a cycle of 1/2f seconds Emf induced in the primary winding is the E1 $E_1 = -\frac{d\psi}{dt} \dots \dots \dots (1)$ Where $\Psi = N1\phi$ So, (2)	8	CO-4	L-2
14	(a)	The induced EMF (E) in any winding having (N) number of turns is given by: $E_{rms} = 4,44 \times f \times N \times \Phi_{max}$ Where, f frequency Hz N number of turns of winding 0 - Flux density in Wb N1 is the number of turns in the primary winding Ry Faraday's Law the flux changes from + ϕ m to - ϕ m in half a cycle of 1/2f seconds Emf induced in the primary winding is the E1 $E_1 = -\frac{d\Psi}{dt} \dots \dots \dots (1)$ Where $\Psi = N1\phi$ So, (2) $E_1 = -N_1 \frac{d\varphi}{dt}$ We know that ϕ is due to AC supply $\phi = \phi$ m Sin(wt)	8	CO-4	L-2
14	(a)	The induced EMF (E) in any winding having (N) number of turns is given by: $E_{rms} = 4,44 \times f \times N \times \Phi_{max}$ Where, f - frequency Hz N - number of turns of winding $\phi \rightarrow Flux \text{ density in Wb}$ N1 is the number of turns in the primary winding By Faraday's Law the flux changes from + ϕ m to - ϕ m in half a cycle of 1/2f seconds Emf induced in the primary winding is the E1 $E_1 = -\frac{d\psi}{dt} \dots \dots \dots (1)$ Where $\Psi = N1\phi$ So, (2) $E_1 = -N_1 \frac{d\phi}{dt}$	8	CO-4	L-2
14	(a)	The induced EMF (E) in any winding having (N) number of turns is given by: $E_{rms} = 4,44 \times f \times N \times \Phi_{max}$ Where, f frequency Hz N number of turns of winding 0 - Flux density in Wb N1 is the number of turns in the primary winding Ry Faraday's Law the flux changes from + ϕ m to - ϕ m in half a cycle of 1/2f seconds Emf induced in the primary winding is the E1 $E_1 = -\frac{d\Psi}{dt} \dots \dots \dots (1)$ Where $\Psi = N1\phi$ So, (2) $E_1 = -N_1 \frac{d\varphi}{dt}$ We know that ϕ is due to AC supply $\phi = \phi$ m Sin(wt)	8	CO-4	L-2

$E_1 = N_1 w \phi_m \sin(wt - \pi/2) \dots \dots \dots (3)$			
So, the induced emf Will lag 90 degrees by flux.			
The maximum value of emf will be			
$E_1 max = N_1 w \phi_m \dots \dots$			
And $w = 2\pi f$			
So			
$E_1 \max = 2\pi f N_1 \varphi_m \dots \dots$			
RMS value will be,			
$E_1 = \frac{E_{1\max}}{\sqrt{2}}\dots\dots\dots(6)$			
By Putting the value of E1max in equation (6) we will get			
$E_1 = \sqrt{2\pi f N_1 \phi_m}$ (7)			
Here, Put the value of π = 3.14 in the equation (7) we will get the value of E1 as			
$E_1 = 4.44 f N_1 \phi_m \dots \dots (8)$			
Similarly,			
$E_2 = \sqrt{2\pi f N_2 \phi_m}$			
Or			
$E_2 = 4.44 f N_2 \varphi_m \dots \dots \dots (9)$			
Now, by equating the equation (8) and (9) we will get			
$\frac{E_2}{E_1} = \frac{4.44 f N_2 \varphi_m}{4.44 f N_1 \varphi_m}$			
$E_1 = 4.44 f N_1 \varphi_m$			
Or			
$\frac{E_2}{E_1} = \frac{N_2}{N_1} = K$			
The above-shown equation is called the turn ratio			
Where,			
K→ transformation ratio.			
The equation (8) and (9) can also be written as shown below using the relation (φm = Bm x Ai) where Ai is the area of iron, and Bm is the maximum value of flux density.			
(ii) A single-phase transformer with a ratio of 440/110V takes a no-load current is 5A at a p.f. of 0.2 lag. If the second. Supplies a current of 120A at 0.8pf lag, calculate the total current taken by the primary.	5	CO-4	L-3
14 a. 3) Atto/nov: roload correct 5A at 0 applicating IS = 120A at 0:8pf rogging. Calculate the total consent taken by the primary			
I2 = 78 × P.f = 120 · D·8 = 96A Primary consert = <u>coursels y traces</u> primary withgree			
$= \frac{96 \times 110}{440}$ $= 244$ Total current = 244 + 5 = 24A			
OR	•		

(b)	Draw the complete phasor diagram of a single-phase transformer on load at leading, lagging and unity power factors. Indicate the various quantities. $I = \frac{1}{12} + \frac{1}{12} $	13	CO-4	L-2
	Fig. 6.12.4 Phasor diagram for leading power factor load			
15 ^(a)	In a 25kVA, 1000/400V single-phase transformer, the iron and copper losses at full load are 300W and 400W respectively. Calculate the load (in kVA) for maximum efficiency.	13	CO-5	L-2

r			1	
	Given Data:			
	• Transformer rating: $S = 25 \mathrm{kVA}$			
	 Voltage ratio: 1000/400 V 			
	 Iron losses (P_{iron}): 300 W 			
	 Copper losses (P_{copper}) at full load: 400 W 			
	Step 1: Relation between copper losses and load			
	Copper losses vary as the square of the load fraction (x):			
	$P_{ ext{copper}}(x) = x^2 \cdot P_{ ext{copper, full load}}$			
	Where x is the fraction of full load.			
	Step 2: Condition for maximum efficiency			
	For maximum efficiency:			
	$P_{\mathrm{iron}} = P_{\mathrm{copper}}(x)$			
	Substitute $P_{coppsr}(x)$:			
	$P_{ m iron} = x^2 \cdot P_{ m copper, full load}$			
	Substitute the values:			
	$300 = x^2 \cdot 400$			
	Solve for x^2 :			
	$x^2 = \frac{300}{400} = 0.75$			
	- NEURI			
	Solve for <i>x</i> : $x = \sqrt{0.75} = 0.866$			
	Step 3: Load for maximum efficiency			
	The load for maximum efficiency is:			
	$\text{Load} = x \cdot S = 0.866 \cdot 25 \text{ kVA}$			
	Load = 21.65 kVA			
	Final Answer:			
	The load for maximum efficiency is approximately 21.65 kVA.			
	OR			
(b)	Illustrate with the help of relevant diagrams, the Scott connection of single-phase transformers. The Scott-T Connection is the method of connecting two single phase transformer to perform the 3-phase to 2-phase conversion and vice-versa. The two transformers are connected electrically but not magnetically.One of the transformers is called the main transformer, and the other is called the auxiliary or teaser transformer.	13	CO-5	L-2
	C C C T S I2m C Circuit Glabe			

		PART C - (1 X 15 = 15 marks)			
16.	(a)	A single phase, 50kVA, 2200V/400V, 50Hz transformer is tested for open and short circuit test with the following test details. O.C: Vo=400V, Io= 1.2A, Woc=240 W (HV open circuited) S.C: Vsc 100V, Isc= rated current, Wsc = 280W(LV short circuited) Calculated the full load efficiency of the transformer at 0.8 pf (lead) and 0.8 pf (lagging). Comment on the results. Transformer Rating: • $S = 50 \text{ kVA}$	15	CO-5	L-4
		• $V_1 = 2200 \text{ V}, V_2 = 400 \text{ V}$ • $f = 50 \text{ Hz}$			
		Open Circuit Test Results (HV side open):			
		• $V_{\rm OC} = 400 \text{V}, I_{\rm OC} = 1.2 \text{A}, P_{\rm OC} = 240 \text{W}$			
		• Iron loss: $P_{ m iron}=P_{ m OC}=240~{ m W}$			
		Short Circuit Test Results (LV side shorted):			
		• $V_{\rm SC} = 100 \mathrm{V}, I_{\rm SC} = I_{\rm rated} = \frac{S}{V_2} = \frac{50,000}{400} = 125 \mathrm{A}, P_{\rm SC} = 280 \mathrm{W}$			
		• Copper loss at full load: $P_{\rm copper}$, full load $= P_{\rm SC} = 280 { m W}$			
		Step 2: Define efficiency formula			
		The efficiency (η) of a transformer at full load is:			
		$\eta = rac{ ext{Output Power}}{ ext{Output Power} + ext{Losses}}$			
		For a transformer with power factor (pf):			
		$\mathrm{Output}\ \mathrm{Power} = S \cdot \mathrm{pf} = 50,000 \cdot \mathrm{pf}$			
		The total losses at full load are:			
		$\mathrm{Losses} = P_{\mathrm{iron}} + P_{\mathrm{copper}}$			
		Step 3: Full-load efficiency at ${ m pf}=0.8$ (lagging and leading)			
		1. Calculate total losses:			
		$Losses = P_{iron} + P_{copper} = 240 + 280 = 520 W$			
		2. Efficiency formula at $pf = 0.8$:			
		$\eta = rac{50,000 \cdot 0.8}{50,000 \cdot 0.8 + 520}$			
		Substituting values:			
		$\eta = rac{40,000}{40,000+520} = rac{40,000}{40,520}$			
		$40,000 + 520 ext{ 40},520$			
		$\eta=0.9871\mathrm{or}98.71\%$			
		Step 4: Comment on the results			
		The efficiency at $ m pf=0.8$ lagging and leading will be the same because efficiency depends only on the magnitude of the power factor, not its angle.			
		• Efficiency is high (98.71%) because the losses (iron and copper) are very small compared to the rated output.			
		 Conclusion: The transformer operates very efficiently under full-load conditions at a power factor of 0.8, regardless of the phase (lagging or leading). This makes it suitable for a wide range of applications. 			
		OR			
	(b)	A compound generator devices a load current of 50A at 500V. The resistance are Ra= 0.052 , Rse = 0.032 , Rsh = 2502 . Find the induced emf if contact drop is $1V$ /brush. Neglect armature	15	CO-1	L-3
	1	reaction. Assume (a) Long shunt (b) short shunt connection.			

Given Data:

- Load current (I_L) = 50 A - Terminal voltage (V) = 500 V
- Armature resistance (R_a) = 0.05 Ω
- Series field resistance $(R_{se}) = 0.03 \,\Omega$
- Shunt field resistance $(R_{sh}) = 250 \Omega$
- Contact drop (V_c) = $1 \, \mathrm{V/brush} = 2 \, \mathrm{V}$ (total for two brushes)
- Neglect armature reaction.

Case (a): Long Shunt Connection

In the long shunt connection, the shunt field winding is connected across both the armature and the series field winding.

1. Shunt Field Current (I_{sh}):

$$I_{sh} = rac{V}{R_{sh}} = rac{500}{250} = 2 \, \mathrm{A}$$

2. Armature Current (I_a): The armature current is the sum of the load current and the shunt field current:

$$I_a = I_L + I_{sh} = 50 + 2 = 52 \text{ A}$$

3. Voltage Drop in Series Field and Armature (V_{drop}):

 $V_{drop} = I_a(R_a + R_{se}) = 52 \cdot (0.05 + 0.03) = 52 \cdot 0.08 = 4.16 \,\mathrm{V}$

Induced EMF (E): Using KVL:

$$E = V + V_c + V_{drop} = 500 + 2 + 4.16 = 506.16 \text{ V}$$

Case (b): Short Shunt Connection

In the short shunt connection, the shunt field winding is connected across the armature only.

 Shunt Field Current (I_{sh}): The voltage across the shunt field winding is the same as the armature voltage:

$$I_{sh} = \frac{V_a}{R_{sh}} = \frac{E - V_c}{R_{sh}}$$

Initially, assume $E\approx 506.16\,{\rm V}$ (as in long shunt). Refine the calculation iteratively if needed.

Substitute $V_a = E - V_c - I_a R_a$:

$$I_{sh} = \frac{E - 2 - 52 \cdot 0.05}{250}$$
$$I_{sh} = \frac{E - 4.6}{250}$$

 Armature Current (I_a): The armature current is the sum of the load current and the shunt field current:

$$I_a = I_L + I_{sh} = 50 + \frac{E - 4.6}{250}$$

3. Induced EMF (E): Using KVL for the short shunt configuration:

 $E = V + V_c + I_a R_a + I_L R_{se}$

Substitute I_a into this equation:

$$E = 500 + 2 + \left(50 + \frac{E - 4.6}{250}\right) \cdot 0.05 + 50 \cdot 0.03$$

E 4.0

Simplify:

$$E = 500 + 2 + 50 \cdot 0.03 + 0.05 \cdot 50 + 0.05 \cdot \frac{E - 4.6}{250}$$

$$E = 502 + 1.5 + 2.5 + 0.0002(E - 4.6)$$

$$E = 506 + 0.0002E - 0.00092$$

$$0.9998E = 505.99908$$

$$E = 506.1 \text{ V}$$

Results:

1. Induced EMF for Long Shunt: $E=506.16\,{\rm V}$

2. Induced EMF for Short Shunt: $E = 506.1 \, {
m V}$