
SNS COLLEGE OF ENGINEERING
(Autonomous)

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

T.G.Ramabharathi / 19EC603-Embedded Systems / Embedded 
System Design Process /SNSCE

1/21/2025 1

UNIT III

EMBEDDED PROGRAMMING

Assembly, linking and loading



SNS COLLEGE OF ENGINEERING
(Autonomous)

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

T.G.Ramabharathi / 19EC603-Embedded Systems / Embedded 
System Design Process /SNSCE

1/21/2025 2

Assembly, linking

Assembly and linking are the last steps in the compilation process they turn a list of instructions
into an image of the program’s bits in memory. Loading actually puts the program in memory so
that it can be executed. In this section, we survey the basic techniques required for assembly
linking to help us understand the complete compilation and loading process.

Fig. Program generation from compilation through loading.



SNS COLLEGE OF ENGINEERING
(Autonomous)

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

 Figure highlights the role of assemblers and linkers in the compilation process. This process is
often hidden from us by compilation commands that do everything required to generate an
executable program. As the figure shows, most compilers do not directly generate machine code,
but instead create the instruction- level program in the form of human-readable assembly
language.

 Generating assembly language rather than binary instructions frees the compiler writer from
details extraneous to the compilation process, which includes the instruction format as well as
the exact addresses of instructions and data.

 The assembler’s job is to translate symbolic assembly language statements into bit- level
representations of instructions known as object code. The assembler takes care of instruction
formats and does part of the job of translating labels intoaddresses.

 However, since the program may be built from many files, the final steps in determining the
addresses of instructions and data are performed by the linker, which produces an executable
binary file. That file may not necessarily be located in the CPU’s memory, however, unless the
linker happens to create the executable directly in RAM. The program that brings the program into
memory forexecution is called a loader.

T.G.Ramabharathi / 19EC603-Embedded Systems / Embedded 
System Design Process /SNSCE

1/21/2025 3



SNS COLLEGE OF ENGINEERING
(Autonomous)

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

 The simplest form of the assembler assumes that the starting address of the assembly language program
has been specified by the programmer. The addresses in such a program are known as absolute
addresses.

Assemblers

 When translating assembly code into object code, the assembler must translate opcodes and format the
bits in each instruction, and translate labels into addresses. In this section, we review the translation of
assembly language into binary.

 Labels make the assembly process more complex, but they are the most important abstraction

provided by the assembler. Labels let the programmer (a human programmer or a compiler

generating assembly code) avoid worrying about the locations of instructions and data. Label

processing requires making two passesthrough the assembly source code as follows:

1. The first pass scans the code to determine the address of each label.

2. The second pass assembles the instructions using the label values computed in the first
pass.

T.G.Ramabharathi / 19EC603-Embedded Systems / Embedded 
System Design Process /SNSCE

1/21/2025 4



SNS COLLEGE OF ENGINEERING
(Autonomous)

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

 As shown in Figure , the name of each symbol and its address is stored in a symbol table that
is built during the first pass. The symbol table is built by scanning from the first instruction
to the last.

 During scanning, the current location in memory is kept in a program location counter (PLC).
Despite the similarity in name to a program counter, the PLC is not used to execute the
program, only to assign memory locations to labels.

 For example, the PLC always makes exactly one pass through the program, whereas the
program counter makes many passes over code in a loop. Thus, at the start of the first pass, the
PLC is set to the program’s starting address and the assembler looks at the first line.

 After examining the line, the assembler updates the PLC to the next location (since ARM
instructions are four bytes long, the PLC would be incremented by four) and looks at the next
instruction. If the instruction begins with a label, a new entry is made in the symbol table, which
includes the label name and its value.



T.G.Ramabharathi / 19EC603-Embedded Systems / Embedded 
System Design Process /SNSCE

1/21/2025 5



SNS COLLEGE OF ENGINEERING
(Autonomous)

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

 The value of the label is equal to the current value of the PLC. At the end of the first pass, the
assembler rewinds to the beginning of the assembly language file to make the second pass. During
the second pass, when a label name is found, the label is looked up in the symbol table and its
value substituted into the appropriate place in theinstruction.

T.G.Ramabharathi / 19EC603-Embedded Systems / Embedded 
System Design Process /SNSCE

1/21/2025 6



SNS COLLEGE OF ENGINEERING
(Autonomous)

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

 But how do we know the starting value of the PLC? The simplest case is absolute addressing. In this
case, one of the first statements in the assembly languageprogram is a pseudo-op that specifies the
origin of the program, that is, thelocation of the first address in the program. A common name for this 
pseudo-op (e.g., the one used for the ARM) is the ORG statement.

ORG 2000

 Which puts the start of the program at location 2000. This pseudo-op accomplishes this by setting

the PLC’s value to its argument’s value, 2000 in this case. Assemblers generally allow a program to

have many ORG statements in case instructions or data must be spread around various spots in

memory.

Linking:

 Many assembly language programs are written as several smaller pieces rather than as a single large
file. Breaking a large program into smaller files helps delineate program modularity. If the program
uses library routines, those will already be preassembled, and assembly language source code for the
libraries may not be available for purchase.

T.G.Ramabharathi / 19EC603-Embedded Systems / Embedded 
System Design Process /SNSCE

1/21/2025 7



SNS COLLEGE OF ENGINEERING
(Autonomous)

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

 A linker allows a program to be stitched together out of several smaller pieces. The linker

operates on the object files created by the assembler and modifies the assembled code to make the

necessary links between files.

 Some labels will be both defined and used in the same file. Other labels will be defined in a single

file but used elsewhere as illustrated in Figure 2.18. The place in the file where a label is defined

is known as an entry point. The place in the file where the label is used is called an external

reference.

 The main job of the loader is to resolve external references based on available entry points.

As a result of the need to know how definitions and references connect, the assembler passes

to the linker not only the object file but also the symbol table.

 Even if the entire symbol table is not kept for later debugging purposes, it must at least pass the 

entry points. External references are identified in the object code by their relative symbol identifiers

T.G.Ramabharathi / 19EC603-Embedded Systems / Embedded 
System Design Process /SNSCE

1/21/2025 8



Fig. External references and entry points

1/21/2025
T.G.Ramabharathi / 19EC603-Embedded Systems / Embedded 

System Design Process /SNSCE
9

SNS COLLEGE OF ENGINEERING
(Autonomous)

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING



The linker proceeds in two phases.

 First, it determines the address of the start of each object file. The order in which object files are to be

loaded is given by the user, either by specifying parameters when the loader is run or by creating a load map

file that gives the order in which files are to be placed in memory. Given the order in which files are to be

placed in memory and the length of each object file, it is easy to compute the starting addressof each file.

 At the start of the second phase, the loader merges all symbol tables from the object files into a single,

large table. It then edits the object files to change relative addresses into addresses. This is typically

performed by having the assembler write extra bits into the object file to identify the instructions and fields

that refer to labels. If a label cannot be found in the merged symbol table, it is undefined and an error message

is sent to the user.

1/21/2025
T.G.Ramabharathi / 19EC603-Embedded Systems / Embedded 

System Design Process /SNSCE
10

SNS COLLEGE OF ENGINEERING
(Autonomous)

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING



THANK YOU

1/21/2025
T.G.Ramabharathi / 19EC603-Embedded Systems / Embedded 

System Design Process /SNSCE
11

SNS COLLEGE OF ENGINEERING
(Autonomous)

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING


