
SNS COLLEGE OF ENGINEERING
(Autonomous)

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

UNIT III

EMBEDDED PROGRAMMING

SOFTWARE PERFORMANCE OPTIMIZATION

ANALYSIS AND OPTIMIZATION OF EXECUTION TIME, 
POWER,ENERGY, PROGRAM SIZE.

T.G.Ramabharathi / 19EC603-Embedded Systems / Embedded 
System Design Process /SNSCE

1/21/2025 1



SNS COLLEGE OF ENGINEERING
(Autonomous)

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

SOFTWARE PERFORMANCE OPTIMIZATION

Loop Optimizations:

Loops are important targets for optimization because programs with loops tend to spend a lot of time
executing those loops. There are three important techniques in optimizing loops: code motion,
induction variable elimination, and strength reduction. Code motion lets us move unnecessary
code out of a loop. If a computation’s result does not depend on operations performed in the loop
body, then we can safely move it out of the loop. Code motion opportunities can arise because
programmers may find some computations clearer and more concise when put in the loop body, even
though they are not strictly dependent on the loop iterations. A simple example of code motion is
also common.

T.G.Ramabharathi / 19EC603-Embedded Systems / Embedded 
System Design Process /SNSCE

1/21/2025 2



SNS COLLEGE OF ENGINEERING
(Autonomous)

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

 The code motion opportunity becomes more obvious when we draw the loop’s CDFG .The loop bound
computation is performed on every iteration during the loop test, even though the result never
changes. We can avoid N *_M _*1 unnecessary executions of this statement by moving it before the
loop, as shown in the figure.

 An induction variable is a variable whose value is derived from the loop iteration variable’s value.
The compiler often introduces induction variables to help it implement the loop. Properly transformed,
we may be able to eliminate some variables and apply strength reduction to others. A nested loop is a
good example of the use of induction variables. Here is a simple nested loop

T.G.Ramabharathi / 19EC603-Embedded Systems / Embedded 
System Design Process /SNSCE

1/21/2025 3



SNS COLLEGE OF ENGINEERING
(Autonomous)

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

T.G.Ramabharathi / 19EC603-Embedded Systems / Embedded 
System Design Process /SNSCE

1/21/2025 4

Cache Optimizations

 A loop nest is a set of loops, one inside the other. Loop nests occur when we process arrays. A large

body of techniques has been developed for optimizing loop nests. Rewriting a loop nest changes the

order in which array elements are accessed. This can expose new parallelism opportunities that can

be exploited by later stages of the compiler, and it can also improve cache performance



SNS COLLEGE OF ENGINEERING
(Autonomous)

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

T.G.Ramabharathi / 19EC603-Embedded Systems / Embedded 
System Design Process /SNSCE

1/21/2025 5

ANALYSIS AND OPTIMIZATION OF EXECUTION TIME, POWER, ENERGY,

PROGRAM SIZE.

 The memory footprint of a program is determined by the size of its data and instructions. Both

must be considered to minimize program size.

 Data provide an excellent opportunity for minimizing size because the data are most highly

dependent on programming style. Because inefficient programs often keep several copies of

data, identifying and eliminating duplications can lead to significant memory savings usually

with little performance penalty.

 Buffers should be sized carefully rather than defining a data array to a large size that the

program will never attain, determine the actual maximum amount of data held in the buffer

and allocate the array accordingly. Data can sometimes be packed, such as by storing several

flags in a single word and extracting them by using bit-level operations.



SNS COLLEGE OF ENGINEERING
(Autonomous)

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

 A very low-level technique for minimizing data is to reuse values. For instance, if several

constants happen to have the same value, they can be mapped to the same location. Data

buffers can often be reused at several different points in the program. This technique must be

used with extreme caution, however, since subsequent versions of the program may not use

the same values for the constants.

 A more generally applicable technique is to generate data on the fly rather than store it. Of

course, the code required to generate the data takes up space in the program, but when

complex data structures are involved there may be some net space savings from using code to

generate data.

 Minimizing the size of the instruction text of a program requires a mix of high-level

program transformations and careful instruction selection.

 Encapsulating functions in subroutines can reduce program size when done carefully.

Because subroutines have overhead for parameter passing that is not obvious from the

high-level language code, there is a minimum-size function body for which a subroutine

makes sense.

T.G.Ramabharathi / 19EC603-Embedded Systems / Embedded 
System Design Process /SNSCE

1/21/2025 6



SNS COLLEGE OF ENGINEERING
(Autonomous)

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

 Architectures that have variable-size instruction lengths are particularly good candidates for careful
coding to minimize program size, which may require assembly language coding of key program
segments. There may also be cases in which one or a sequence of instructions is much smaller
than alternative implementations for example, a multiply-accumulate instruction may be both
smaller and faster than separate arithmetic operations.

 When reducing the number of instructions in a program, one important technique is the proper use
of subroutines. If the program performs identical operations repeatedly, these operations are natural
candidates for subroutines.

 Even if the operations vary somewhat, you may be able to construct a properly parameterized
subroutine that saves space. Of course, when considering the code size savings, the subroutine.

T.G.Ramabharathi / 19EC603-Embedded Systems / Embedded 
System Design Process /SNSCE

1/21/2025 7



SNS COLLEGE OF ENGINEERING
(Autonomous)

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Thank you

T.G.Ramabharathi / 19EC603-Embedded Systems / Embedded 
System Design Process /SNSCE

1/21/2025 8


