
SNS COLLEGE OF ENGINEERING
Kurumbapalayam(Po), Coimbatore – 641 107

An Autonomous Institution
Accredited by NAAC-UGC with ‘A’ Grade

Approved by AICTE, Recognized by UGC & Affiliated to Anna University, Chennai

DEPARTMENT OF ARTIFICIAL INTELLIGENCE & DATA
SCIENCE

Course Code and Name : 23ITB203 / Principles of Operating Systems

II YEAR / IV SEMESTER

Unit 2 : Scheduling Criteria & Algorithms

2/6/2025 Scheduling/ S.Priyadharshini / AD / SNSCE

2/6/2025

Scheduling Criteria

`CPU utilization

`Throughput

`Turnaround Time

`Waiting Time

`Response Time

Scheduling/ S.Priyadharshini / AD / SNSCE

2/6/2025

Scheduling Algorithms

(First-Come, First-Served Scheduling)

• By far the simplest scheduling algorithm

• The process that requests the CPU first is allocated the CPU first.

• The implementation of FCFS policy is easily managed with a FIFO queue.

• When a process enters the ready queue, its PCB is linked onto the tail of the queue.

• When the CPU is free, it is allocated to the process at the head of the queue.

• The running process is then removed from the queue.

Tail Head

First In – First Out

Scheduling/ S.Priyadharshini / AD / SNSCE

2/6/2025

The average waiting time under the FCFS policy, is often quite long.

Consider the following set of processes that arrive at time 0.

If the process arrives in the order P1, P2, P3, and are served in FCFS order, we get the result

shown in the following Gantt chart.

Waiting time for P1 = 0 ms

Waiting time for P2 = 24 ms Average waiting time =(0+24+27)/3=17ms

Waiting time for P3 = 27 ms

Process Burst Time (ms)

P1 24

P2 3

P3 3

P1 P2 P3

0 24 27 30

Scheduling/ S.Priyadharshini / AD / SNSCE

2/6/2025

If the process come in the order P2, P3, P1, however the result will be shown in the

following Gantt chart:

Waiting time for P1 = 6 ms

Waiting time for P2 = 0 ms Average waiting time = (6+0+3)/3 = 3 ms

Waiting time for P3 = 3 ms

This reduction is substantial. Thus, the average waiting time under an FCFS policy is

generally not minimal and may vary substantially if the process’s CPU burst times vary

greatly.

The FCFS scheduling algorithm is nonpreemptive

• Once the CPU has been allocated to a process, that process keeps the CPU until it

releases the CPU, either by terminating or requesting I/O.

• The FCFS algorithm is troublesome for time-sharing systems, where it is

important that each user get a share of the CPU at regular intervals.

P2 P3 P1

0 3 6 30

Scheduling/ S.Priyadharshini / AD / SNSCE

2/6/2025

• This algorithm associates with each process the length of the process’s next CPU

burst.

• When the CPU is available, it is assigned to the process that has the smallest next

CPU burst.

• If the next CPU bursts of two processes are the same, FCFS scheduling is used to

break the tie.

A more appropriate term for this scheduling method would be the

Shortest-Next-CPU-Burst Algorithm

because scheduling depends on the length of the next CPU burst of a process,

rather than its total length.

The SJF algorithm can be either preemptive or nonpreemptive

Scheduling Algorithms
(Shortest-Job-First Scheduling)

Scheduling/ S.Priyadharshini / AD / SNSCE

2/6/2025

Example of SJF Scheduling (Non-Preemptive)

Consider the following set of processes, with the length of the CPU burst given in

milliseconds:

Waiting time for P1 = 3 ms

Waiting time for P2 = 16 ms

Waiting time for P3 = 9 ms

Waiting time for P4 = 0 ms

Average waiting Time

= (3+16+9+0)/4 = 7 ms

Gantt Chart:

By comparison, if we were using the FCFS scheduling scheme, the average

waiting time would be 10.25 milliseconds

Process ID Burst Time (ms)

P1 6

P2 8

P3 7

P4 3

P4 P1 P3 P2
0 3 9 16 24

Scheduling/ S.Priyadharshini / AD / SNSCE

2/6/2025

Example of SJF Scheduling (Preemptive)

Consider the following four processes, with the length of the CPU burst given in

milliseconds and the processes arrive at the ready queue at the times shown:

Waiting time for P1 = (10-1-0) = 9 ms

Waiting time for P2 = (1-0-1) = 0 ms

Waiting time for P3 = (17-0-2) = 15 ms

Waiting time for P4 = (5-0-3) = 2 ms

Average waiting Time

Gantt chart = (9+0+15+2)/4 = 6.5 ms

Waiting time = Total waiting time – No. of milliseconds process executed – Arrival Time

Preemptive SJF scheduling is sometimes called Shortest Remaining Time First Scheduling

Problems with SJF Scheduling
The real difficulty with the SJF algorithm is knowing the length of the next CPU request.

Although the SJF algorithm is optimal, it cannot be implemented at the level of short-term CPU

There is no way to know the length of the next CPU burst.

Process ID Arrival Time Burst Time

P1 0 8

P2 1 4

P3 2 9

P4 3 5

P1 P2 P4 P1 P3
0 1 5 10 17 26

Scheduling/ S.Priyadharshini / AD / SNSCE

2/6/2025

• To try to approximate SJF Scheduling

• We may not know the length of the next CPU burst, but we may be able to predict its

value.

• We expect that the next CPU burst will be similar in length to the previous ones.

• Thus, by computing an approximation of the length of the next CPU burst, we can

pick the process with the shortest predicted CPU burst.

One approach is

Scheduling/ S.Priyadharshini / AD / SNSCE

2/6/2025

• A priority is associated with each process, and the CPU is allocated to the process

with the highest priority.

• Equal priority processes are scheduled in FCFS order.

• An SJF algorithm is simply a priority algorithm where priority is the inverse of the

(predicted) next CPU burst. The larger the CPU burst, the lower the priority and vice-

versa.

A preemptive priority scheduling algorithm will preempt the CPU if the priority of the

newly arrived process is higher than the priority of the current running process.

A nonpreemptive priority scheduling algorithm will simply put the new process at the

head of the ready queue.

Priority scheduling can be either preemptive or nonpreemptive

Scheduling Algorithms
(Priority Scheduling)

Scheduling/ S.Priyadharshini / AD / SNSCE

2/6/2025

Consider the following four processes, assumed to have arrived at time 0, in the order

P1, P2, P3, P4, P5 with the length of the CPU burst given in milliseconds:

Waiting time for P1 = 6 ms

Waiting time for P2 = 0 ms

Waiting time for P3 = 16 ms

Waiting time for P4 = 18 ms

Waiting time for P5 = 1 ms

Average waiting Time

Using priority scheduling, we would schedule these =(6+0+16+18+1)/5

Processes according to the following Gantt chart: =41/5 = 8.2 ms

Process ID Burst Time Priority

P1 10 3

P2 1 1

P3 2 4

P4 1 5

P5 5 2

P2 P5 P1 P3 P4

0

1 6 16 18 26

Scheduling/ S.Priyadharshini / AD / SNSCE

2/6/2025

• A major problem with priority scheduling algorithms is indefinite blocking, or

starvation

• A process that is ready to run but waiting for the CPU can be considered blocked.

• A priority scheduling algorithm can leave some low priority processes waiting

indefinitely

• In a heavily loaded computer system, a steady stream of higher-priority processes can

prevent a low-priority process from ever getting the CPU.

Solution to the Problem

• A solution to the problem of indefinite blockage of low-priority processes is aging.

• Aging is a technique of gradually increasing the priority of processes that wait in the

system for a long time.

• For example,

• If priorities range from 127 (low) to 0 (high), we could increase the priority

Of a waiting process by 1 every 15 minutes.

Eventually, even a process with an initial priority of 127 would have the

highest priority in the system and would be executed.

Problem with Priority Scheduling

Scheduling/ S.Priyadharshini / AD / SNSCE

2/6/2025

• A major problem with priority scheduling algorithms is indefinite blocking, or

starvation

• A process that is ready to run but waiting for the CPU can be considered blocked.

• A priority scheduling algorithm can leave some low priority processes waiting

indefinitely

• In a heavily loaded computer system, a steady stream of higher-priority processes can

prevent a low-priority process from ever getting the CPU.

Solution to the Problem

• A solution to the problem of indefinite blockage of low-priority processes is aging.

• Aging is a technique of gradually increasing the priority of processes that wait in the

system for a long time.

• For example,

• If priorities range from 127 (low) to 0 (high), we could increase the priority

Of a waiting process by 1 every 15 minutes.

Eventually, even a process with an initial priority of 127 would have the

highest priority in the system and would be executed.

Problem with Priority Scheduling

Scheduling/ S.Priyadharshini / AD / SNSCE

2/6/2025

• A major problem with priority scheduling algorithms is indefinite blocking, or

starvation

• A process that is ready to run but waiting for the CPU can be considered blocked.

• A priority scheduling algorithm can leave some low priority processes waiting

indefinitely

• In a heavily loaded computer system, a steady stream of higher-priority processes can

prevent a low-priority process from ever getting the CPU.

Solution to the Problem

• A solution to the problem of indefinite blockage of low-priority processes is aging.

• Aging is a technique of gradually increasing the priority of processes that wait in the

system for a long time.

• For example,

• If priorities range from 127 (low) to 0 (high), we could increase the priority

Of a waiting process by 1 every 15 minutes.

Eventually, even a process with an initial priority of 127 would have the

highest priority in the system and would be executed.

Problem with Priority Scheduling

Scheduling/ S.Priyadharshini / AD / SNSCE

2/6/2025

• The round-robin (RR) scheduling algorithm is designed especially for time sharing

systems.

• It is similar to FCFS scheduling, but preemption is added to switch between processes.

• A small unit of time, called a time quantum or time slice, is defined (generally from 10

to 100 milliseconds).

Scheduling Algorithms
(Round-Robin Scheduling)

P1Circular queue

P6

P1

P2

P3

P4

P5

P7

P8

P9

P10

CPU Scheduler

• The ready queue is treated as Circular queue.
Ready
Queue

The CPU Scheduler goes around the ready queue,
allocating the CPU to each
Process for a time interval of upto 1 time quantum

Scheduling/ S.Priyadharshini / AD / SNSCE

