

SNS COLLEGE OF ENGINEERING

Kurumbapalayam(Po), Coimbatore – 641 107

An Autonomous Institution

Accredited by NAAC-UGC with 'A' Grade
Approved by AICTE, Recognized by UGC & Affiliated to Anna University,
Chennai

DEPARTMENT OF INFORMATION TECHNOLOGY

Course Code and Name: 19IT602-CRYPTOGRAPHY AND CYBER SECURITY

III YEAR / VI SEMESTER

Unit 2: SYMMETRIC KEY CRYPTOGRAPHY

Topic: Substitution Techniques

Recap

- Model for Network Security
- Network Access Security Model
- Simplified Model of Symmetric Encryption
- Terms in Cryptography
- Types of Attacks on Encrypted Messages

Substitution Techniques

- A substitution technique is one in which the letters of plaintext are replaced by other letters or by numbers or symbols.
 - Caesar Cipher
 - Monoalphabetic Ciphers
 - Playfair Cipher
 - Hill Cipher
 - Polyalphabetic Ciphers
 - One-Time Pad

- Multiletter Cipher
- Lester Hill in 1929 Mathematician
- Encryption
 - m successive plaintext Substitutes to m cipher text Letters
 - m = linear
 - Each character assigned with numeric values (a=0,b=1....z=25)

• If m = 3, General form
$$c_1 = (k_{11}p_1 + k_{12}p_2 + k_{13}p_3) \ mod \ 26$$

$$c_2 = (k_{21}p_1 + k_{22}p_2 + k_{23}p_3) mod \ 26$$

$$c_3 = (k_{31}p_1 + k_{32}p_2 + k_{33}p_3) mod \ 26$$

• Expressed in column vectors and matrices
$$\begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = \begin{pmatrix} k_{11} & k_{12} & k_{13} \\ k_{21} & k_{22} & k_{23} \\ k_{31} & k_{32} & k_{33} \end{pmatrix} \begin{pmatrix} p_1 \\ p_2 \\ p_3 \end{pmatrix} mod \ 26$$

Or

$$C = E(K,P) = KP \mod 26$$

 $P = D(K,P) = K^{-1} C \mod 26 = K^{-1} KP = P$

• Consider m = 3, the plain text "paymoremoney "

$$P = \begin{pmatrix} p & m & e & n \\ a & o & m & e \\ y & r & o & y \end{pmatrix} \qquad P = \begin{pmatrix} 15 & 12 & 4 & 13 \\ 0 & 14 & 12 & 4 \\ 24 & 17 & 14 & 24 \end{pmatrix}$$
• Encryption Key

$$K = \begin{pmatrix} 17 & 17 & 5 \\ 21 & 18 & 21 \\ 2 & 2 & 19 \end{pmatrix}$$

$$P.T_1 = \begin{bmatrix} p \\ a \\ y \end{bmatrix} = \begin{bmatrix} 15 \\ 0 \\ 24 \end{bmatrix}$$

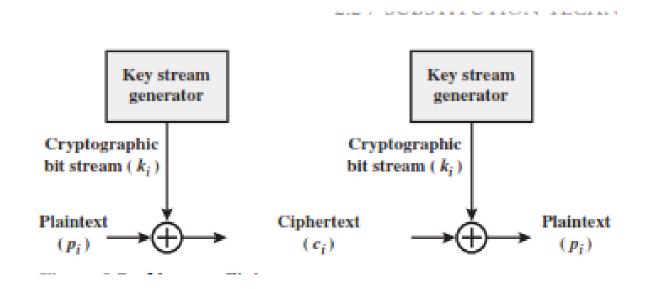
$$C.T_1 = Key \times P.T_1 \mod 26 = \begin{bmatrix} 17 & 17 & 5 \\ 21 & 18 & 21 \\ 2 & 2 & 19 \end{bmatrix} \begin{bmatrix} 15 \\ 0 \\ 24 \end{bmatrix} \mod 26 = \begin{bmatrix} 11 \\ 13 \\ 18 \end{bmatrix} = \begin{bmatrix} L \\ N \\ S \end{bmatrix}$$

$$C.T_2 = Key \times P.T_2 \mod 26 = \begin{bmatrix} 17 & 17 & 5 \\ 21 & 18 & 21 \\ 2 & 2 & 19 \end{bmatrix} \begin{bmatrix} 12 \\ 14 \\ 17 \end{bmatrix} \mod 26 = \begin{bmatrix} 7 \\ 3 \\ 11 \end{bmatrix} = \begin{bmatrix} H \\ D \\ L \end{bmatrix}$$

- Decryption inverse of K⁻¹
- We know that, $K K^{-1} = K^{-1} K = I$

$$K = \begin{pmatrix} 17 & 17 & 5 \\ 21 & 18 & 21 \\ 2 & 2 & 19 \end{pmatrix} \qquad K^{-1} = \begin{pmatrix} 4 & 9 & 15 \\ 15 & 17 & 6 \\ 24 & 0 & 17 \end{pmatrix}$$

$$KK^{-1} = \begin{pmatrix} 17 & 17 & 5 \\ 21 & 18 & 21 \\ 2 & 2 & 19 \end{pmatrix} \begin{pmatrix} 4 & 9 & 15 \\ 15 & 17 & 6 \\ 24 & 0 & 17 \end{pmatrix}$$


$$= \begin{pmatrix} 443 & 442 & 442 \\ 858 & 495 & 780 \\ 494 & 52 & 365 \end{pmatrix} \mod 26 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Polyalphabetic Cipher

- The first known polyalphabetic cipher was the *Alberti Cipher* invented by Leon Battista Alberti in around 1467.
- Vigenère Cipher C_i = P_i XOR K_i P_i = C_i XOR K_i

Vigenère Cipher Table

A	В	C	D	E	F	G	H	I	J	K	L	M	N	0	P	Q	R	S	T	U	V	W	X	Y	Z
A	В	C	D	Е	F	G	Н	I	J	K	L	М	N	0	P	Q	R	s	T	U	V	W	Х	Y	Z
В	С	D	E	F	G	н	I	J	K	L	M	N	0	P	Q	R	S	T	U	V	W	Х	Y	Z	A
C	D	E	F	G	н	I	J	K	L	М	N	0	P	Q	R	s	Т	U	٧	W	Х	Y	Z	A	В
D	E	F	G	н	I	J	К	L	М	N	0	P	Q	R	s	Т	U	v	W	Х	Y	Z	A	В	С
E	F	G	н	I	J	K	L	М	N	0	P	Q	R	S	Т	U	V	W	х	Y	Z	A	В	С	D
F	G	н	I	J	К	L	М	N	0	P	Q	R	s	T	U	V	W	х	Y	Z	A	В	С	D	E
G	н	I	J	K	L	М	N	0	P	Q	R	\$	T	U	v	W	Х	Y	Z	A	В	С	D	E	F
н	I	J	K	L	M	N	0	P	Q	R	s	T	U	٧	W	Х	Y	Z	A	В	С	D	E	F	G
I	J	К	L	М	N	0	P	Q	R	s	Т	U	V	W	Х	Y	Z	A	В	С	D	E	F	G	н
J	К	L	М	N	0	P	Q	R	s	T	U	v	W	Х	Y	z	A	В	С	D	E	F	G	н	I
K	L	M	N	0	P	Q	R	s	T	U	V	W	х	Y	Z	A	В	С	D	E	F	G	н	I	J
L	М	N	0	P	Q	R	s	T	U	V	W	Х	Y	Z	A	В	С	D	E	F	G	н	I	J	K
М	N	0	P	Q	R	s	T	U	v	W	Х	Y	Z	A	В	С	D	Е	F	G	Н	I	J	K	L
N	0	P	Q	R	S	T	U	V	W	X	Y	Z	A	В	С	D	Е	F	G	Н	I	J	K	L	М
0	P	Q	R	s	T	U	V	W	Х	Y	Z	A	В	С	D	Е	F	G	Н	I	J	K	L	М	N
P	Q	R	s	T	U	V	W	Х	Y	Z	A	В	С	D	E	F	G	Н	I	J	K	L	М	N	0
Q	R	s	T	U	V	W	Х	Y	Z	A	В	С	D	Е	F	G	Н	I	J	K	L	М	N	0	P
R	S	Т	U	V	W	Х	Y	Z	Α	В	С	D	Е	F	G	Н	I	J	К	L	М	N	0	P	Q
S	T	U	v	W	Х	Y	Z	А	В	С	D	Е	F	G	Н	I	J	K	L	М	N	0	P	Q	R
T	U	V	W	Х	Y	Z	A	В	С	D	E	F	G	Н	I	J	K	L	М	N	0	P	Q	R	S
U	V	W	Х	Y	Z	А	В	С	D	Е	F	G	н	I	J	К	L	М	N	0	P	Q	R	s	T
V	W	х	Y	Z	A	В	С	D	Е	F	G	н	I	J	K	L	M	N	0	P	Q	R	s	T	U
W	x	Y	Z	A	В	С	D	Е	F	G	н	I	J	K	L	М	N	0	P	Q	R	s	T	U	٧
X	Y	Z	А	В	С	D	E	F	G	н	I	J	К	L	М	N	0	P	Q	R	s	Т	U	V	W
Y	Z	A	В	С	D	E	F	G	н	I	J	K	L	M	N	0	P	Q	R	s	Т	U	v	W	X
Z	A	В	С	D	E	F	G	н	I	J	K	L	М	N	0	P	Q	R	s	т	U	V	W	х	Y

Example

key: deceptivedeceptive

plaintext: wearediscoveredsaveyourself

ciphertext: ZICVTWQNGRZGVTWAVZHCQYGLMGJ

key	3	4	2	4	15	19	8	21	4	3	4	2	4	15
plaintext	22	4	0	17	4	3	8	18	2	14	21	4	17	4
ciphertext	25	8	2	21	19	22	16	13	6	17	25	6	21	19

key	19	8	21	4	3	4	2	4	15	19	8	21	4
plaintext	3	18	0	21	4	24	14	20	17	18	4	11	5
ciphertext	22	0	21	25	7	2	16	24	6	11	12	6	9

One – time Pad

- Each new message requires new key of same length
- Unbreakable
- No relationship to plain Text

ciphertext: ANKYODKYUREPFJBYOJDSPLREYIUNOFDOIUERFPLUYTS

key: pxlmvmsydofuyrvzwc tnlebnecvgdupahfzzlmnyih

plaintext: mr mustard with the candlestick in the hall

ciphertext: ANKYODKYUREPFJBYOJDSPLREYIUNOFDOIUERFPLUYTS

key: pftgpmiydgaxgoufhklllmhsqdqogtewbqfgyovuhwt

plaintext: miss scarlet with the knife in the library

Thank You