

SNS COLLEGE OF ENGINEERING

Kurumbapalayam(Po), Coimbatore – 641 107

An Autonomous Institution

Accredited by NAAC-UGC with 'A' Grade
Approved by AICTE, Recognized by UGC & Affiliated to Anna
University, Chennai

DEPARTMENT OF INFORMATION TECHNOLOGY

Course Code and Name: 19IT602-CRYPTOGRAPHY AND CYBER SECURITY

III YEAR / VI SEMESTER
Unit 3: ASYMMETRIC KEY CRYPTOGRAPHY

Topic : Euler Totient Function

Fermat's Theorem

- Useful in public key and primality testing
- If P is Prime Number & a is a positive integer not divisible by p then
 - $a^{p-1} = 1 \pmod{p}$
 - where p is prime and gcd(a,p)=1
- Also known as Fermat's Little Theorem
- Also have: $a^p = a \pmod{p}$

Euler Totient Function ø(n)

- Euler Totient Function ø(n) = pq
 - $\phi(n) = pq = \phi(p) * \phi(q) = (p-1) * (q-1)$
- Where p and q are two prime numbers; p≠q
- Example

$$\phi(21) = (3-1)x(7-1) = 2x6 = 12$$

Euler Totient Function ø(n):some Values

n	$\phi(n)$
1	1
2	1
3	2
4	2
5	4
6	2
7	6
8	4
9	6
10	4

n	$\phi(n)$
11	10
12	4
13	12
14	6
15	8
16	8
17	16
18	6
19	18
20	8

n	$\phi(n)$
21	12
22	10
23	22
24	8
25	20
26	12
27	18
28	12
29	28
30	8

Euler's Theorem

- Every a and n that are relatively prime:
 - a ^{ø(n)} ≡ 1(mod n)
- Example

```
a=3;n=10; \phi(10)=4;
hence 34 = 81 = 1 mod 10
a=2;n=11; \phi(11)=10;
hence 210 = 1024 = 1 mod 11
```


Testing for Primality

- often need to find large prime numbers
- traditionally sieve using trial division
 - ie. divide by all numbers (primes) in turn less than the square root of the number
 - only works for small numbers
- alternatively can use statistical primality tests based on properties of primes
 - for which all primes numbers satisfy property
 - but some composite numbers, called pseudo-primes, also satisfy the property
- can use a slower deterministic Primality test

Miller Rabin Algorithm

a test based on prime properties that result from Fermat's Theorem algorithm is:

TEST (n) is:

- 1. Find integers k, q, k > 0, q odd, so that $(n-1)=2^kq$
- 2. Select a random integer a, 1<a<n-1
- 3. if $a^q \mod n = 1$ then return ("inconclusive");
- 4. for j = 0 to k 1 do 5. if $(a^{2jq} \mod n = n-1)$ then return("inconclusive")
- 6. return ("composite")

Thank You