

SNS COLLEGE OF ENGINEERING

Kurumbapalayam(Po), Coimbatore – 641 107

An Autonomous Institution

Accredited by NAAC-UGC with 'A' Grade Approved by AICTE, Recognized by UGC & Affiliated to Anna University, Chennai

DEPARTMENT OF INFORMATION TECHNOLOGY

Course Code and Name : 19IT602– CRYPTOGRAPHY AND CYBER SECURITY

III YEAR / VI SEMESTER Unit 3: ASYMMETRIC KEY CRYPTOGRAPHY

Topic : Diffie Hellman key exchange

Problem with the network

Diffie Hellman Key Exchange

- Diffie & Hellman in 1976 along with the exposition of public key concepts
 - Securely Exchange keys
- a public-key distribution scheme
 - cannot be used to exchange an arbitrary message
 - rather it can establish a common key
 - known only to the two participants
- value of key depends on the participants (and their private and public key information)
- based on exponentiation in a finite (Galois) field (modulo a prime or a polynomial) - easy
- security relies on the difficulty of computing discrete logarithms (similar to factoring) – hard

Diffie Hellman – Colors Analogy

Analogy continued..

- Eve can't determine the secret color because she doesn't have the right color to mix together
- This works based on two assumptions
 - Paint is easy to mix
 - Paint is hard to unmix

Algorithm

- all users agree on global parameters:
 - ► large prime integer or polynomial q
 - α a primitive root mod q
- each user (eg. A) generates their key
 - chooses a secret key (number): x_A < q</p>
 - compute their public key: $y_A = \alpha^{x_A} \mod q$
- each user makes public that key y_A
- each user (eg. B) generates their key
 - chooses a secret key (number): x_B < q</p>
 - compute their public key: $y_{B} = \alpha^{x_{B}} \mod q$
- shared session key for users A & B is K:
 - $K = y_{A_{x_{A}}}^{x_{B}} \mod q \quad (\text{which } \mathbf{B} \text{ can compute})$ $K = y_{B}^{x_{A}} \mod q \quad (\text{which } \mathbf{A} \text{ can compute})$

Example

- users Alice & Bob who wish to swap keys:
- agree on prime q=353 and $\alpha=3$
- select random secret keys:
 - A chooses $x_A = 97$, B chooses $x_B = 233$
- compute public keys:

•
$$y_A = \mathbf{3}^{97} \mod 353 = 40$$
 (Alice)
• $y_B = \mathbf{3}^{233} \mod 353 = 248$ (Bob)

• compute shared session key as:

 $K_{AB} = y_{B}^{x_{A}} \mod 353 = 248^{97} = 160$ (Alice) $K_{AB} = y_{A}^{x_{B}} \mod 353 = 40^{233} = 160$ (Bob)

Thank You