

SNS COLLEGE OF ENGINEERING

Kurumbapalayam(Po), Coimbatore – 641 107

An Autonomous Institution

Accredited by NAAC-UGC with 'A' Grade
Approved by AICTE, Recognized by UGC & Affiliated to Anna
University, Chennai

DEPARTMENT OF INFORMATION TECHNOLOGY

Course Code and Name: 19IT602-CRYPTOGRAPHY AND CYBER SECURITY

III YEAR / VI SEMESTER
Unit 3: ASYMMETRIC KEY CRYPTOGRAPHY

Topic: Elliptic curve cryptography

Elliptic Curve Arithmetic

- Most of the products and standards that use public-key cryptography for encryption and digital signatures use RSA
 - The key length for secure RSA use has increased over recent years and this has put a heavier processing load on applications using RSA
- Elliptic curve cryptography (ECC) is showing up in standardization efforts including the IEEE P1363 Standard for Public-Key Cryptography
- Principal attraction of ECC is that it appears to offer equal security for a far smaller key size
- Confidence level in ECC is not yet as high as that in RSA

Abelian Group

• A set of elements with a binary operation, denoted by •, that associates to each ordered pair (a, b) of elements in G an element $(a \cdot b)$ in G, such that the following axioms are obeyed:

(A1) Closure: If a and b belong to G, then $a \cdot b$ is also in G

(A2) Associative: $a \cdot (b \cdot c) = (a \cdot b) \cdot c$ for all a, b, c in G

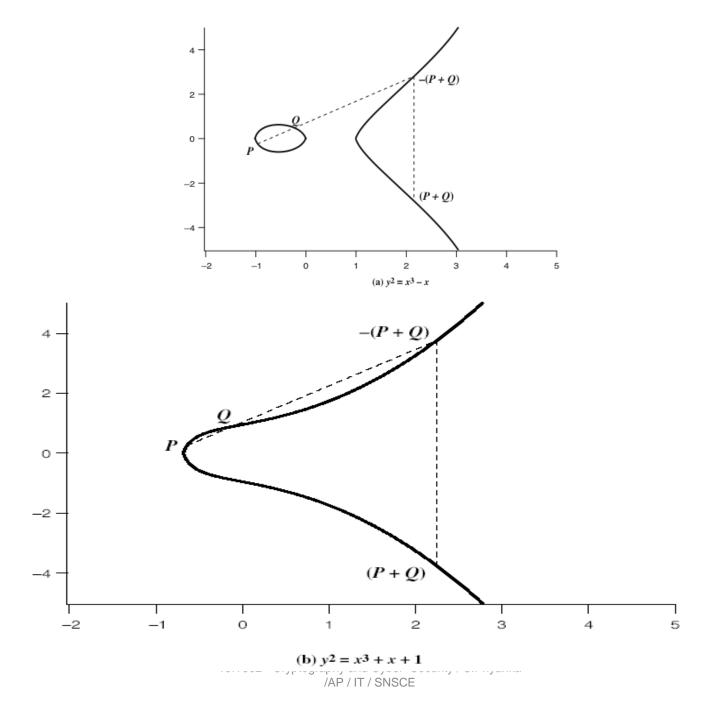
(A3) Identity element:

There is an element e in G such that $a \cdot e = e \cdot a = a$ for all a in G

(A4) Inverse element:

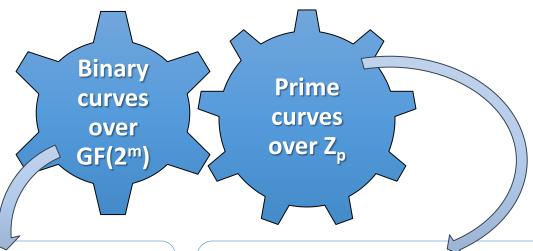
For each a in G there is an element a' in G such that $a \cdot a' = a' \cdot a = e$

(A5) Commutative: $a \cdot b = b \cdot a$ for all a, b in G



Elliptic Curves Over Z_p

- Elliptic curve cryptography uses curves whose variables and coefficients are finite
- Two families of elliptic curves are used in cryptographic applications:



- Variables and coefficients all take on values in GF(2^m) and in calculations are performed over GF(2^m)
- Best for hardware applications

- Use a cubic equation in which the variables and coefficients all take on values in the set of integers from 0 through p-1 and in which calculations are performed modulo p
- Best for software applications

Points (other than O) on the Elliptic Curve $E_{23}(1, 1)$

(0, 1)	(6, 4)	(12, 19)
(0, 22)	(6, 19)	(13, 7)
(1,7)	(7, 11)	(13, 16)
(1, 16)	(7, 12)	(17, 3)
(3, 10)	(9, 7)	(17, 20)
(3, 13)	(9, 16)	(18, 3)
(4, 0)	(11, 3)	(18, 20)
(5, 4)	(11, 20)	(19, 5)
(5, 19)	(12, 4)	(19, 18)

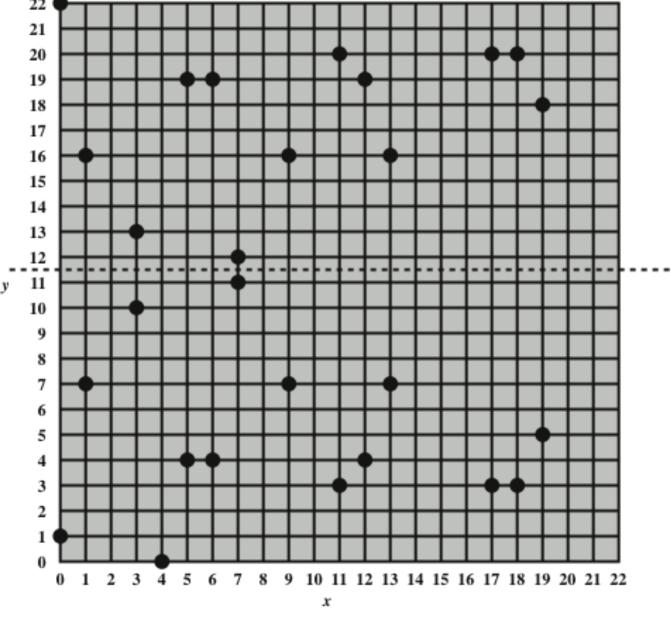


Figure 0.5 to the Edinstic Grant $\mathbf{E}_{23}(1,1)$

- Use a cubic equation in which the variables and coefficients all take on values in $GF(2^m)$ for some number m
- Calculations are performed using the rules of arithmetic in $GF(2^m)$
- The form of cubic equation appropriate for cryptographic applications for elliptic curves is somewhat different for $GF(2^m)$ than for Z_p
 - It is understood that the variables x and y and the coefficients a and b are elements of $GF(2^m)$ and that calculations are performed in $GF(2^m)$

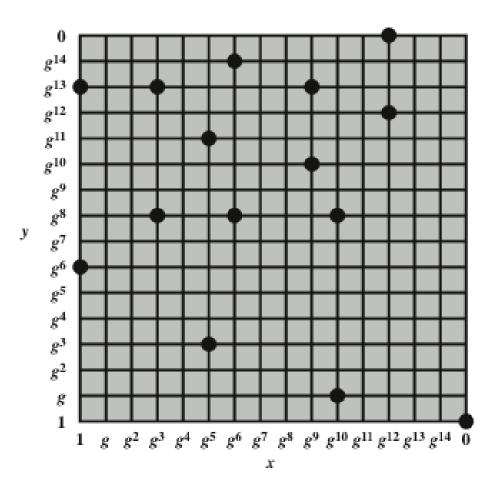


Figure 10.6 The Elliptic Curve $E_{2^4}(g^4, 1)$

- Addition operation in ECC is the counterpart of modular multiplication in RSA
- Multiple addition is the counterpart of modular exponentiation

To form a cryptographic system using elliptic curves, we need to find a "hard problem" corresponding to factoring the product of two primes or taking the discrete logarithm

- Q=kP, where Q, P belong to a prime curve
- Is "easy" to compute Q given k and P
- But "hard" to find k given Q, and P
- Known as the elliptic curve logarithm problem

Global Public Elements

 $E_q(a, b)$ elliptic curve with parameters a, b, and q, where q is a prime

or an integer of the form 2m

G point on elliptic curve whose order is large value n

User A Key Generation

Select private $n_A < n$

Calculate public $P_A = n_A \times G$

User B Key Generation

Select private n_B

 $n_B < n$

Calculate public P_B

 $P_B = n_B \times G$

Calculation of Secret Key by User A

$$K = n_A \times P_B$$

Calculation of Secret Key by User B

$$K = n_B \times P_A$$

ECC Diffie-Hellman

- can do key exchange analogous to D-H
- •users select a suitable curve $E_p(a,b)$
- select base point G=(x₁,y₁) with large order n s.t. nG=O
- •A & B select private keys $n_A < n$, $n_B < n$
- •compute public keys: $P_A = n_A \times G$, $P_B = n_B \times G$
- •compute shared key: $K=n_A\times P_B$, $K=n_B\times P_A$
 - same since $K=n_A \times n_B \times G$

ECC Encryption/Decryption

- several alternatives, will consider simplest
- must first encode any message M as a point on the elliptic curve P_m
- select suitable curve & point G as in D-H
- each user chooses private key n_A<n
- and computes public key $P_A = n_A \times G$
- to encrypt $P_m : C_m = \{kG, P_m + kP_b\}, k \text{ random}$
- decrypt C_m compute:

$$P_{m}+kP_{b}-n_{B}(kG) = P_{m}+k(n_{B}G)-n_{B}(kG) = P_{m}$$

- Depends on the difficulty of the elliptic curve logarithm problem
- Fastest known technique is "Pollard rho method"
- Compared to factoring, can use much smaller key sizes than with RSA
- For equivalent key lengths computations are roughly equivalent
- Hence, for similar security ECC offers significant computational advantages

in parable Key Sizes in Terms of Computationa in Effort for Cryptanalysis (NIST SP-800-57)

Symmetric key algorithms	Diffie-Hellman, Digital Signature	RSA (size of n in bits)	ECC (modulus size in
aigoritimis	Algorithm	(SIZC OF III DIGS)	bits)
80	L = 1024 N = 160	1024	160-223
112	L = 2048 N = 224	2048	224–255
128	L = 3072 N = 256	3072	256–383
192	L = 7680 N = 384	7680	384–511
256	L = 15,360 N = 512	15,360	512+

Note: L = size of public key, N = size of private key

THANK YOU