

INSTRUCTION SET PRELIMINARIES IN EMBEDDED SYSTEMS

The instruction set is a collection of machine-level commands (instructions) that a processor can execute. Each instruction is encoded in binary and corresponds to a specific operation. It is the processor's "vocabulary" for performing tasks.

TYPES OF INSTRUCTION SETS

1. CISC (Complex Instruction Set Computing):

Example: Intel x86

Rich set of complex instructions.

Instructions may perform multiple operations (e.g., fetching, adding, storing).

Requires more hardware for decoding but fewer lines of assembly code.

2. RISC (Reduced Instruction Set Computing):

Example: ARM, MIPS

Focuses on simple instructions that execute in a single clock cycle.

Optimized for speed and energy efficiency.

Commonly used in embedded systems due to low power consumption.

INSTRUCTION SET ARCHITECTURE (ISA)

The ISA is the specification that defines the supported instructions, data types, registers, memory architecture, and addressing modes of a processor. Examples include:

- ARM ISA (widely used in embedded systems)
- AVR ISA (used in microcontrollers like Arduino)
- x86 ISA (used in general-purpose processors)

SNS COLLEGE OF ENGINEERING (Autonomous)

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

A von Neumann architecture computer.

A Harvard architecture.

Applications

- Real-time Systems: For applications like robotics or automation, instructions are optimized for time-critical operations.
- Power-sensitive Systems: RISC-based instruction sets ensure energy-efficient operations in IoT devices or wearables.
- Signal Processing: Specialized instruction sets, such as SIMD (Single Instruction Multiple Data), enhance the performance of digital signal processing.

Thank you