

SNS COLLEGE OF TECHNOLOGY Coimbatore-35 An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A++'(III Cycle) Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

23ECT101 - CIRCUIT ANALYSIS

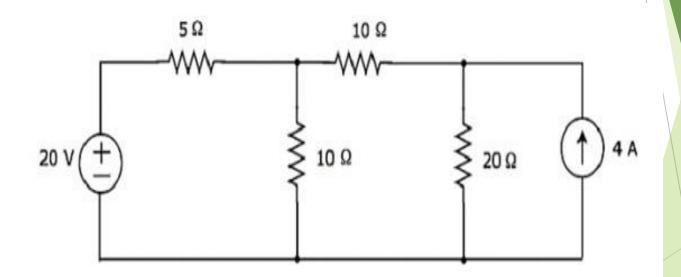
I YEAR/ II SEMESTER

UNIT 1 – NODE ANALYSIS
TOPIC - Nodal Analysis

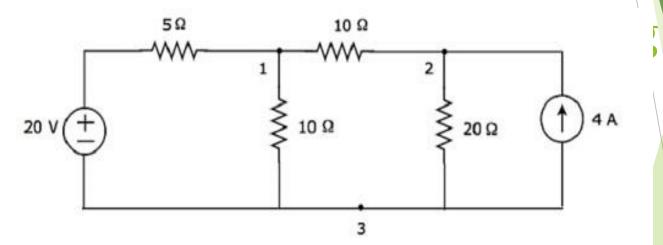
Nodal Analysis

- There are two basic methods that are used for solving any electrical network: Nodal analysis and Mesh analysis.
- In Nodal analysis, we will consider the node voltages with respect to Ground. Hence, Nodal analysis is also called as **Node-voltage method**.

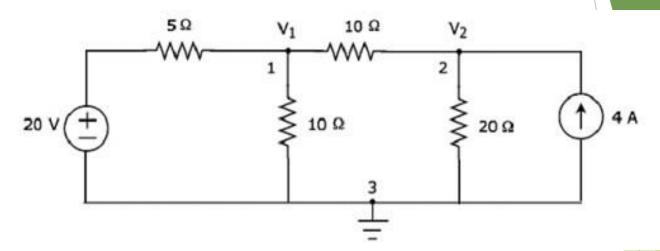
- □ Follow these steps while solving any electrical network or circuit using **Nodal analysis**.
- □ **Step 1** Identify the **principal nodes** and choose one of them as **reference node**. We will treat that reference **node** as the Ground.
- □ **Step 2** Label the **node voltages** with respect to Ground from all the principal nodes except the reference node.



- □ **Step 3** Write **nodal equations** at all the principal nodes except the reference node. Nodal equation is obtained by applying KCL first and then Ohm's law.
- □ **Step 4** Solve the nodal equations obtained in **Step 3** in order to get the node voltages.
- □ Now, we can find the current flowing through any element and the voltage across any element that is present in the given network by using node voltages.


 \Box Find the current flowing through 20 Ω resistor of the following circuit using **Nodal analysis**.

Step 1 – There are three principle nodes in the above circuit. Those are labelled as



In the above figure, consider **node 3** as reference node (Ground).

Step 2 – The node voltages, V_1 and V_2 , are labelled in the following figure.

In the above figure, V_1 is the voltage from node 1 with respect to ground and V_2 is the voltage from node 2 with respect to ground.

Step 3: The nodal equation at

The nodal equation at node 1 is

$$\frac{V_1 - 20}{5} + \frac{V_1}{10} + \frac{V_1 - V_2}{10} = 0$$

$$\Rightarrow \frac{2V_1 - 40 + V_1 + V_1 - V_2}{10} = 0$$

$$\Rightarrow 4V_1 - 40 - V_2 = 0$$

$$\Rightarrow V_2 = 4V_1 - 40$$

Equation 1

The nodal equation at node 2 is

$$-4 + \frac{V_2}{20} + \frac{V_2 - V_1}{10} = 0$$

$$\Rightarrow \frac{-80 + V_2 + 2V_2 - 2V_2}{20} = 0$$

$$\Rightarrow 3V_2 - 2V_1 = 80$$

Equation 2

Step 4 – Finding node voltages, V_1 and V_2 by solving Equation 1 and Equation 2. substitute Equation 1 in Equation 2.

$$3(4V_1-40)-2V_1=80$$

$$\Rightarrow 12V_1 - 120 - 2V_1 = 80$$

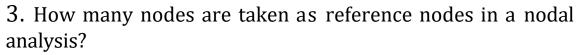
$$\Rightarrow 10V_1 = 200$$

$$\Rightarrow V_1 = 20V$$

Substitute $V_1 = 20 \text{ V}$ in Equation 1.

$$V_2 = 4(20) - 40$$

$$\Rightarrow V_2 = 40V$$


- □ **Step 5** The voltage across 20 Ω resistor is nothing but the node voltage V_2 and it is equal to 40 V. Now, we can find the current flowing through 20 Ω resistor by using Ohm's law.
- $\square I20\Omega = V2/R$
- \square Substitute the values of V_2 and R in the above equation.
- $\square 120\Omega = 40/20 \Rightarrow 120\Omega = 2A$

Assessment

- 1. Nodal analysis is generally used to determine_____
- a) Voltage
- b) Current
- c) Resistance
- d) Power
- 2. If there are 10 nodes in a circuit, how many equations do we get?
- a) 10
- b) 9
- c) 8
- d) 7

- a) 1
- b) 2
- c) 3
- d) 4

THANK YOU