
SNS COLLEGE OF ENGINEERING

Kurumbapalayam (po), Coimbatore – 641 107

Accredited by NAAC-UGC with ‘A’ Grade

Approved by AICTE & Affiliated to Anna University, Chennai

DEPARTMENT OF INFORMATION TECHNOLOGY

23ITT203- OBJECT ORIENTED SOFTWARE ENGINEERING

UNIT 2

Requirement analysis and specification

Requirement Analysis is the process of gathering and analyzing the functional and non-functional

needs of stakeholders, users, and systems, to ensure that the software will meet the needs of the

end users and other stakeholders.

Key Steps in Requirement Analysis:

 Identify Stakeholders:

Stakeholders include users, customers, developers, and anyone who has an interest in the

system’s functionality. Example: In a Library Management System, stakeholders

might include the librarian, library users (students or staff), system administrators, and

developers.

 Gather Requirements:

Collect information through methods such as:

Interviews with stakeholders

Surveys and Questionnaires
Observation of current systems

Document analysis (existing software or process documents)

Example: For the Library System, you might conduct interviews with librarians to understand

their workflow in managing books, issuing, and tracking loans.

1. Classify Requirements:

o Functional Requirements: Describe what the system should do (actions or

services).

 Example: "The system should allow a user to search for books by title,

author, or ISBN."

o Non-Functional Requirements: Define constraints such as performance, security,

reliability, or usability.

 Example: "The system should handle up to 200 concurrent users."

2. Prioritize Requirements:

o Identify essential (must-have) vs. nice-to-have features.

o Consider constraints like budget, time, and technology limitations.

o Example: High Priority: "Allow users to borrow and return books."

o Low Priority: "Allow users to rate books after borrowing."

3. Define Use Cases:

o Use cases describe the system's behavior from the perspective of a user interacting

with it. Each use case represents a sequence of actions the system will perform in

response to user input.

Example:

o Use Case: "Borrow Book"

Actor: User

Scenario:

 User logs in.

 Searches for a book.

 Selects a book.

 System checks if it is available.

 If available, the book is issued to the user.

 If not, the system informs the user.

Software Requirement Specification (SRS)

The Software Requirement Specification (SRS) is a formal document that provides detailed

descriptions of the software's expected behavior. The SRS outlines both functional and non-

functional requirements, and serves as a reference point throughout the development and testing

phases.

Key Components of SRS:

1. Introduction:

o Purpose: Explains the purpose of the document and the software system.

o Scope: What the software will do and the boundaries of the system.

o Definitions and Acronyms: Key terms used in the system.

Example:

o Purpose: "This document specifies the requirements for the Library Management

System (LMS)."

o Scope: "The LMS will allow users to search for books, borrow and return books,

and manage fines for overdue books."

2. System Overview:

o High-level description of the system’s architecture, components, and their

interactions.

Example:

o The LMS consists of User Interface (for searching and borrowing books),

Database (for storing user and book data), and Admin Interface (for managing

library operations).

3. Functional Requirements:

o Describes specific functions or features the system should support, often

represented by use cases.

Example:

o Requirement 1: The system should allow a user to search for books by title, author,

or ISBN.

o Requirement 2: The system must allow a user to borrow a book by verifying

availability and updating the inventory.

4. Non-Functional Requirements:

o Defines constraints such as performance, security, and usability.

Example:

o Performance: The system should respond to user queries within 2 seconds.

o Security: The system should store user data securely, encrypting passwords.

o Usability: The system should be easy to navigate, with a simple, user-friendly

interface.

5. System Models:

o Use Case Diagram: Shows interactions between actors and system use cases.

 Example: A Use Case Diagram for the Library System shows actors like

User, Admin, and Librarian, interacting with use cases like Borrow Book,

Return Book, Add Book, and Search Book.

o Class Diagram: Shows the structure of classes within the system and their

relationships.

 Example:

 Class Book with attributes like title, author, and methods like

borrow(), return().

 Class User with attributes like userID, name, and methods like

borrowBook(), returnBook().

o Data Flow Diagram (DFD): Illustrates the flow of data through the system,

helping identify processes, data stores, and external entities.

 Example:

 Level 0: The entire system is represented as a single process

(Library System), interacting with external entities (User, Library

Database).

 Level 1: Decomposes the system into sub-processes such as

SearchBook(), BorrowBook(), ReturnBook().

6. Assumptions and Constraints:

o Any assumptions made about the system, such as software or hardware limitations.

Example:

o Assumption: "Users will have internet access to use the library’s online system."

o Constraint: "The system must run on both Windows and Linux operating

systems."

 Object-Oriented Approach to Requirement Specification

In object-oriented software engineering, requirements are often modeled using objects, their

relationships, and interactions, which align well with the overall object-oriented design.

Key Concepts:

1. Use Case Model:

o Defines system functionality in terms of interactions between actors (users,

systems) and use cases.

o Example:

 Use Case: "Search for a Book"

 Actor: User

 Flow:

1. User enters a search query (book title, author, etc.).

2. System searches the database and displays relevant books.

2. Object Class Model:

o Focuses on defining objects and their relationships.

o Example:

 Classes in Library System:

 Book (attributes: title, author, isbn, status; methods: borrow(),

return()).

 User (attributes: userID, name, borrowedBooks; methods:

borrowBook(), returnBook()).

 Object Interaction:

 Describes how objects interact to achieve system functionality.

 Example:

 Borrow Book Use Case:

 Objects involved: User, Book, LibrarySystem.

 Interaction:

1. User requests to borrow a Book.

2. LibrarySystem checks availability.

3. If available, Book is borrowed by the User.

 Non-Functional Requirements (NFRs) in O-O systems:

 O-O design supports modularization, making it easier to meet non-functional

requirements like performance, scalability, and security.

 Example:

 To improve performance, implement caching strategies for book search results.

 For security, ensure that sensitive data, such as user information, is encrypted using secure

algorithms.

