
SNS COLLEGE OF ENGINEERING

Kurumbapalayam (po), Coimbatore – 641 107

Accredited by NAAC-UGC with ‘A’ Grade

Approved by AICTE & Affiliated to Anna University, Chennai

DEPARTMENT OF INFORMATION TECHNOLOGY

23ITT203- OBJECT ORIENTED SOFTWARE ENGINEERING

UNIT 2

Requirement analysis and specification

Requirement Analysis is the process of gathering and analyzing the functional and non-functional

needs of stakeholders, users, and systems, to ensure that the software will meet the needs of the

end users and other stakeholders.

Key Steps in Requirement Analysis:

 Identify Stakeholders:

Stakeholders include users, customers, developers, and anyone who has an interest in the

system’s functionality. Example: In a Library Management System, stakeholders

might include the librarian, library users (students or staff), system administrators, and

developers.

 Gather Requirements:

Collect information through methods such as:

Interviews with stakeholders

Surveys and Questionnaires
Observation of current systems

Document analysis (existing software or process documents)

Example: For the Library System, you might conduct interviews with librarians to understand

their workflow in managing books, issuing, and tracking loans.

1. Classify Requirements:

o Functional Requirements: Describe what the system should do (actions or

services).

 Example: "The system should allow a user to search for books by title,

author, or ISBN."

o Non-Functional Requirements: Define constraints such as performance, security,

reliability, or usability.

 Example: "The system should handle up to 200 concurrent users."

2. Prioritize Requirements:

o Identify essential (must-have) vs. nice-to-have features.

o Consider constraints like budget, time, and technology limitations.

o Example: High Priority: "Allow users to borrow and return books."

o Low Priority: "Allow users to rate books after borrowing."

3. Define Use Cases:

o Use cases describe the system's behavior from the perspective of a user interacting

with it. Each use case represents a sequence of actions the system will perform in

response to user input.

Example:

o Use Case: "Borrow Book"

Actor: User

Scenario:

 User logs in.

 Searches for a book.

 Selects a book.

 System checks if it is available.

 If available, the book is issued to the user.

 If not, the system informs the user.

Software Requirement Specification (SRS)

The Software Requirement Specification (SRS) is a formal document that provides detailed

descriptions of the software's expected behavior. The SRS outlines both functional and non-

functional requirements, and serves as a reference point throughout the development and testing

phases.

Key Components of SRS:

1. Introduction:

o Purpose: Explains the purpose of the document and the software system.

o Scope: What the software will do and the boundaries of the system.

o Definitions and Acronyms: Key terms used in the system.

Example:

o Purpose: "This document specifies the requirements for the Library Management

System (LMS)."

o Scope: "The LMS will allow users to search for books, borrow and return books,

and manage fines for overdue books."

2. System Overview:

o High-level description of the system’s architecture, components, and their

interactions.

Example:

o The LMS consists of User Interface (for searching and borrowing books),

Database (for storing user and book data), and Admin Interface (for managing

library operations).

3. Functional Requirements:

o Describes specific functions or features the system should support, often

represented by use cases.

Example:

o Requirement 1: The system should allow a user to search for books by title, author,

or ISBN.

o Requirement 2: The system must allow a user to borrow a book by verifying

availability and updating the inventory.

4. Non-Functional Requirements:

o Defines constraints such as performance, security, and usability.

Example:

o Performance: The system should respond to user queries within 2 seconds.

o Security: The system should store user data securely, encrypting passwords.

o Usability: The system should be easy to navigate, with a simple, user-friendly

interface.

5. System Models:

o Use Case Diagram: Shows interactions between actors and system use cases.

 Example: A Use Case Diagram for the Library System shows actors like

User, Admin, and Librarian, interacting with use cases like Borrow Book,

Return Book, Add Book, and Search Book.

o Class Diagram: Shows the structure of classes within the system and their

relationships.

 Example:

 Class Book with attributes like title, author, and methods like

borrow(), return().

 Class User with attributes like userID, name, and methods like

borrowBook(), returnBook().

o Data Flow Diagram (DFD): Illustrates the flow of data through the system,

helping identify processes, data stores, and external entities.

 Example:

 Level 0: The entire system is represented as a single process

(Library System), interacting with external entities (User, Library

Database).

 Level 1: Decomposes the system into sub-processes such as

SearchBook(), BorrowBook(), ReturnBook().

6. Assumptions and Constraints:

o Any assumptions made about the system, such as software or hardware limitations.

Example:

o Assumption: "Users will have internet access to use the library’s online system."

o Constraint: "The system must run on both Windows and Linux operating

systems."

 Object-Oriented Approach to Requirement Specification

In object-oriented software engineering, requirements are often modeled using objects, their

relationships, and interactions, which align well with the overall object-oriented design.

Key Concepts:

1. Use Case Model:

o Defines system functionality in terms of interactions between actors (users,

systems) and use cases.

o Example:

 Use Case: "Search for a Book"

 Actor: User

 Flow:

1. User enters a search query (book title, author, etc.).

2. System searches the database and displays relevant books.

2. Object Class Model:

o Focuses on defining objects and their relationships.

o Example:

 Classes in Library System:

 Book (attributes: title, author, isbn, status; methods: borrow(),

return()).

 User (attributes: userID, name, borrowedBooks; methods:

borrowBook(), returnBook()).

 Object Interaction:

 Describes how objects interact to achieve system functionality.

 Example:

 Borrow Book Use Case:

 Objects involved: User, Book, LibrarySystem.

 Interaction:

1. User requests to borrow a Book.

2. LibrarySystem checks availability.

3. If available, Book is borrowed by the User.

 Non-Functional Requirements (NFRs) in O-O systems:

 O-O design supports modularization, making it easier to meet non-functional

requirements like performance, scalability, and security.

 Example:

 To improve performance, implement caching strategies for book search results.

 For security, ensure that sensitive data, such as user information, is encrypted using secure

algorithms.

