
SNS COLLEGE OF ENGINEERING 

Kurumbapalayam (po), Coimbatore – 641 107 

Accredited by NAAC-UGC with ‘A’ Grade 

Approved by AICTE & Affiliated to Anna University, Chennai 

DEPARTMENT OF INFORMATION TECHNOLOGY 

23ITT203- OBJECT ORIENTED SOFTWARE ENGINEERING 

UNIT 2 

Software Requirement Specification (SRS) in Object-Oriented Software Engineering 

(OOSE) 

The Software Requirement Specification (SRS) is a formal document that describes the 

functional and non-functional requirements of a software system. The purpose of the SRS is to 

provide a detailed description of the system’s intended behavior, functionality, and constraints, so 

that developers, testers, and stakeholders have a shared understanding of what the software will 

do. The SRS serves as a blueprint for design, implementation, and testing. 

In Object-Oriented Software Engineering, the SRS is often aligned with object-oriented 

principles such as Use Cases, Class Diagrams, and Interaction Diagrams to clearly define the 

system and its components. 

1. What is Software Requirement Specification (SRS)? 

An SRS is a comprehensive description of the system’s requirements, both functional and non-

functional. It serves as the foundation for the development process and includes all the information 

needed to develop, test, and maintain the system. It also acts as a contract between the development 

team and stakeholders. 

2. Key Components of the SRS Document 

An SRS document can be structured in different ways, but it typically includes the following 

sections: 

1. Introduction: 

o Purpose: Explains the purpose of the document and the system. 

o Scope: Outlines the boundaries of the system and what it will and will not do. 

o Definitions and Acronyms: Lists any terminology and abbreviations used in the 

document. 

o References: Any documents or resources referenced in the SRS. 

o Overview: A brief outline of the SRS structure. 

 



Example: 

o Purpose: The purpose of this document is to specify the requirements for the 

Library Management System (LMS) that will enable users to search, borrow, and 

return books. 

o Scope: The system will support book searches, issue/return operations, overdue 

fines, and user management. 

2. System Overview: 

o A high-level description of the system, its components, and how they interact. 

o Example: 

 Overview of LMS: The Library Management System is an automated 

system that tracks books, manages user accounts, and handles book 

borrowing and returning. 

 System Components: The system will consist of the User Interface (UI), 

Database, and Admin Interface. 

3. Functional Requirements: 

o Detailed description of the functional requirements — what the system must do. 

Each requirement typically describes a specific function the system must perform 

and includes associated use cases or workflows. 

o These requirements are often written as use cases or user stories. 

Example: 

o Functional Requirement 1: Search for a Book 

The system shall allow users to search for books by title, author, or ISBN. 

o Functional Requirement 2: Borrow a Book 

The system shall allow users to borrow books, updating the book's status and user’s 

account accordingly. 

4. Non-Functional Requirements: 

o Defines the non-functional aspects of the system, such as performance, scalability, 

security, and reliability. These requirements define how the system should operate. 

Example: 

o Performance: The system must respond to user queries within 2 seconds. 

o Security: The system must encrypt user passwords before storing them. 

o Scalability: The system must be able to handle up to 1000 concurrent users. 

5. Use Case Models: 

o Use Case Diagrams describe interactions between actors (users, systems) and 

system functions (use cases). 

Use cases should describe how the system will behave in response to user actions. 

Example: 

o Use Case Diagram for a Library Management System might show: 

 Actors: User, Admin, Librarian 



 Use cases: Search Book, Borrow Book, Return Book, Add Book 

6. System Features: 

o A more detailed breakdown of individual system features. For each feature, the 

document describes its function and how it will interact with other components. 

Example: 

o Search Book Feature: 

The system will allow users to search books by title, author, or ISBN. Results will 

display a list of books that match the search criteria with options to view book 

details or borrow the book. 

7. External Interfaces: 

o Describes the interfaces the system will interact with (e.g., external systems, APIs, 

hardware). 

Example: 

o Payment Gateway Integration: The system must integrate with an external 

payment gateway to handle overdue fines. 

o Barcode Scanner: The system must be able to read ISBN barcodes from books for 

easy identification. 

8. System Architecture: 

o A high-level architectural view of the system, often illustrated with diagrams like 

Component Diagrams or Deployment Diagrams. This section explains how 

various system components interact with each other. 

Example: 

o System Architecture for LMS: The system has three main components: 

 Client (UI): Interfaces with the user. 

 Backend (Server): Handles business logic, such as book searches and 

borrowing. 

 Database: Stores book and user information. 

9. Data Requirements: 

o Defines what data the system will use and how it will be stored or processed. 

o This may include Data Flow Diagrams (DFD), Entity-Relationship Diagrams 

(ERD), and Database Design. 

Example: 

o Book Information: The system stores each book’s title, author, ISBN, genre, and 

availability status. 

o User Information: The system stores each user’s name, userID, borrowing history, 

and fines. 

10. Assumptions and Constraints: 



o Assumptions are things that are assumed to be true during development (e.g., 

system environment, external tools). 

o Constraints include any limitations that affect the design or development of the 

system (e.g., hardware, software, legal, budgetary). 

Example: 

o Assumption: The system will be deployed on Linux servers with PostgreSQL as the 

database. 

o Constraint: The system must be developed using Java. 

3. Example Structure of an SRS for a Library Management System 

1. Introduction 

 Purpose: This document defines the software requirements for the Library Management 

System. 

 Scope: The system will manage the lending of books in a library, including book search, 

borrowing, return, and fine calculation. 

 Definitions: 

o Book: A physical object in the library, represented by a title, author, and ISBN. 

o User: A person who interacts with the system to borrow or return books. 

2. System Overview 

 The system includes three main components: 

o Client Application (User Interface): Allows users to search for books, borrow, 

return, and view account details. 

o Server: Handles book data management, user data, and transactions 

(borrowing/returning). 

o Database: Stores information about books, users, and transactions. 

3. Functional Requirements 

 FR1: Book Search 

The system shall allow users to search for books by title, author, or ISBN. 

 FR2: Book Borrowing 

The system shall allow a user to borrow a book if the book is available, updating the 

inventory accordingly. 

 FR3: Fine Management 

The system shall calculate fines based on overdue books and allow users to pay fines. 

4. Non-Functional Requirements 

 Performance: The system must support up to 500 users concurrently. 

 Security: All sensitive data (user passwords, payment information) must be encrypted. 



5. Use Case Model 

 Actors: User, Librarian, Admin 

 Use Cases: 

o Search Book 

o Borrow Book 

o Return Book 

o Generate Fine Report 

 Use Case Diagram: 

o Users interact with the system to borrow and return books. 

o Admins manage the book inventory and user accounts. 

6. External Interfaces 

 Payment Gateway: The system must integrate with a third-party service for handling 

payments of overdue fines. 

 Barcode Scanner: Users can scan barcodes to quickly search for books. 

7. Data Requirements 

 Database Tables: 

o Users: userID, name, email, borrowedBooks[]. 

o Books: bookID, title, author, ISBN, status. 

 DFD: The flow of information between the User Interface, Server, and Database is 

illustrated. 

4. Benefits of an SRS Document 

 Clear Communication: An SRS ensures that all stakeholders (clients, developers, testers) 

are on the same page about what the system will do. 

 Foundation for Design: The SRS acts as a foundation for system design, helping designers 

understand what needs to be built. 

 Reference for Testing: The SRS provides a basis for creating test cases to verify that the 

system meets its requirements. 

 Reduced Risk of Changes: A well-defined SRS reduces the likelihood of 

misunderstandings and scope changes during development. 

A Software Requirement Specification (SRS) is essential for developing high-quality software. It 

clearly defines the functional and non-functional requirements of the system and serves as the 

contract between stakeholders and developers. The document includes system features, use cases, 

non-functional requirements, and external interfaces, and serves as the basis for system design, 

development, and testing. 

 


