
SNS COLLEGE OF ENGINEERING

Kurumbapalayam (po), Coimbatore – 641 107

Accredited by NAAC-UGC with ‘A’ Grade

Approved by AICTE & Affiliated to Anna University, Chennai

DEPARTMENT OF INFORMATION TECHNOLOGY

23ITT203- OBJECT ORIENTED SOFTWARE ENGINEERING

UNIT 2

Formal System Specification in Object-Oriented Software Engineering (OOSE)

Formal System Specification refers to the use of mathematical models and formal languages to

describe the system's behavior, functionality, and structure in a precise, unambiguous way. The

goal of formal specification is to ensure that the system's design meets the requirements without

any contradictions or ambiguities, thus improving the overall quality and correctness of the system.

Formal specifications are typically used in safety-critical systems, where errors could lead to

catastrophic outcomes (e.g., medical systems, aerospace applications, and banking systems).

In Object-Oriented Software Engineering (OOSE), formal methods help specify the behavior

and interactions of objects in the system by using mathematical representations.

1. What is Formal System Specification?

A Formal System Specification is a method of representing the system’s design using formal

mathematical models. These models precisely define the system's components, the relationships

between them, and the expected behavior of the system under various conditions.

 Formal: Refers to the use of rigorous mathematical logic.

 Specification: Refers to the description of system functionality, structure, and behavior.

2. Benefits of Formal System Specification

1. Unambiguous: Formal specifications remove ambiguity and vagueness, ensuring that

every requirement is clearly defined.

2. Precise: Mathematical models provide a precise description of system behavior, reducing

misunderstandings.

3. Verification and Validation: Formal methods enable the verification and validation of

system properties, ensuring that the design fulfills the required functionality and adheres

to constraints.

4. Detecting Errors Early: By using formal models early in the development cycle, errors

can be detected and rectified before actual implementation begins.

5. Consistency: Formal specification helps ensure consistency across various components of

the system, reducing the risk of contradictions.

3. Formal Methods in Object-Oriented Software Engineering

In Object-Oriented Software Engineering, formal system specification can be used in various

stages of the software development lifecycle, including design, analysis, and verification.

3.1 Types of Formal Methods

There are various formal methods that can be applied to system specification:

1. Finite State Machines (FSM):

o A Finite State Machine (FSM) is a mathematical model of computation that

describes the system's states and the transitions between those states.

o Used to model the behavior of systems that can be in one of a finite number of

states, and where each state has associated transitions triggered by inputs.

Example:

In a Library Management System, the FSM might describe the states a book can be in:

o States: Available, Borrowed, Reserved

o Transitions: Borrow, Return, Reserve

2. Petri Nets:

o Petri Nets are graphical models used to represent concurrent systems. They are

used to model workflows, system processes, and dependencies.

o Petri Nets represent the system as a set of places, transitions, and tokens that move

between places according to certain rules.

Example:

In a Library Management System, a Petri Net could model the process of borrowing a

book, where places represent available books, borrowed books, and user accounts, while

transitions represent borrowing actions and updates to the system.

3. Z-Notation:

o Z-Notation is a formal specification language used to describe systems using set

theory and first-order predicate logic. It is often used to describe the state and

operations of a system mathematically.

o Z-Notation uses a combination of schema and predicates to specify system

components and their relationships.

Example:

A Library Management System could be described using Z-Notation to model the data

schema for Books and Users, and formalize the operations like borrow and return.

4. B-Method:

o The B-Method is a formal method used to describe software systems using abstract

machines. It provides a way to model the system’s data and operations with a high

level of precision.

o The B-Method is particularly useful in ensuring the correctness of systems with

complex behaviors or strict requirements.

Example:

In a Library Management System, the B-Method could specify the data structures (e.g.,

book catalog, user account) and operations (e.g., borrow, return) using formal

specifications.

4. Key Concepts in Formal System Specification

4.1 State-based Specification

State-based formal methods focus on describing the system in terms of states and state

transitions. The system is represented by a finite set of states, and the transitions between these

states are triggered by events or conditions.

 State: A specific condition or situation of the system at a given time.

 Transition: The movement from one state to another, triggered by an event.

Example:

In a Library Management System, a state-based specification might describe the following:

 States:

o Idle: The system is waiting for a user to take an action.

o Searching: The system is searching for a book based on user input.

o Borrowing: A user is borrowing a book from the library.

 Transitions:

o From Idle to Searching when the user initiates a book search.

o From Searching to Idle when the search is complete.

o From Idle to Borrowing when a user chooses to borrow a book.

4.2 Event-based Specification

Event-based specification describes how the system responds to events or inputs. The focus is on

identifying events that trigger changes in the system and how those changes are handled.

 Event: A significant occurrence that can trigger a change in the system.

 Response: The system’s reaction to an event.

Example:

In a Library Management System, an event-based specification might describe:

 Event: User requests to borrow a book.

 Response: Check if the book is available, then update the status of the book to "borrowed"

and deduct the borrowing limit of the user.

4.3 Process-based Specification

Process-based specification is used to model sequences of events or activities that occur in the

system. This method helps describe workflows, interactions, and dependencies between processes.

Example:

A Library Management System's process-based specification could describe the process for

borrowing a book:

1. Search: User searches for a book.

2. Availability Check: The system checks if the book is available.

3. Borrowing Process: If available, the system allows the user to borrow the book, updates

the book's status, and records the transaction.

5. Examples of Formal System Specification

Example 1: Finite State Machine (FSM)

Consider a Library Management System where a book can be in the following states:

 Available

 Borrowed

 Reserved

States:

 Available: Book is not borrowed.

 Borrowed: Book is checked out by a user.

 Reserved: Book is reserved by a user but not yet borrowed.

Transitions:

 Borrow: From Available to Borrowed when a user borrows the book.

 Return: From Borrowed to Available when the user returns the book.

 Reserve: From Available to Reserved when the user reserves the book.

Example 2: Petri Net

A Petri Net for a Library Management System might represent the process of borrowing a book:

 Places: Represent the current status of books (e.g., available, borrowed).

 Transitions: Represent actions (e.g., borrow, return).

 Tokens: Represent the instances of books and their availability.

Formal system specification is an essential practice in systems engineering, especially when

designing complex or critical systems. It ensures the system behaves as expected and helps in

verifying the correctness of the system before implementation. By using mathematical models

such as Finite State Machines, Petri Nets, Z-Notation, and B-Method, engineers can precisely

define system behavior, identify potential errors, and ensure system consistency.

In Object-Oriented Software Engineering, formal methods can be integrated into the analysis

and design phases, aligning well with object-oriented principles like classes, objects, and

interactions. Using formal specification methods in OOSE can lead to better-defined, more

reliable software systems.

Finite State Machines (FSM) in Object-Oriented Software Engineering (OOSE)

A Finite State Machine (FSM) is a conceptual model used to represent the behavior of a system

in terms of states, events, and transitions between states. It is particularly useful in designing

systems that exhibit a finite number of states and whose behavior is triggered by specific events

or conditions.

1. Key Concepts of FSM

 States: These are the various conditions or modes that the system can be in. At any given

point, the system is in exactly one state.

o Example: In a Turnstile, the states could be "Locked" and "Unlocked".

 Transitions: These define how the system moves from one state to another. Transitions

occur when certain events happen.

o Example: A transition from "Locked" to "Unlocked" occurs when a user inserts a

coin.

 Events: These are external inputs that trigger a transition between states. Events are the

cause of state changes.

o Example: An event could be the insertion of a coin or a button press.

 Initial State: This is the state in which the system starts when it is first activated.

o Example: A turnstile typically starts in the "Locked" state.

 Final State (optional): Some FSMs have final states, which represent the end of a process

or activity.

o Example: A file download system may have a final state called "Download

Completed".

2. Types of FSMs

1. Deterministic Finite State Machine (DFSM):

o In a DFSM, each state has exactly one transition for each possible event. This

makes the behavior predictable and unambiguous.

o Example: A simple Turnstile FSM, where inserting a coin always unlocks the

turnstile.

2. Non-Deterministic Finite State Machine (NDFSM):

o In an NDFSM, a state can have multiple transitions for the same event. This

introduces multiple possible outcomes, allowing for more flexible behavior.

o Example: In a Game System, a character might have multiple actions that can be

triggered by the same button press, depending on the current game state (e.g.,

standing, running, or jumping).

3. FSM Diagram Representation

An FSM Diagram visually represents the states and transitions in a system. States are typically

represented as circles, and transitions are represented as arrows between the circles. Each arrow

is labeled with the event that triggers the transition.

Example: Simple Turnstile FSM

 States:

o Locked: The turnstile is locked and prevents entry.

o Unlocked: The turnstile is unlocked and allows entry.

 Events:

o Coin Inserted: A coin is inserted by the user.

o Push: The user attempts to push the turnstile.

 Transitions:

o From Locked to Unlocked when a coin is inserted.

o From Unlocked to Locked when the user pushes the turnstile.

FSM Diagram:

lua

Copy

+------------+ Coin Inserted +-----------+

| Locked | ----------------->| Unlocked |

+------------+ +-----------+

 ^ |

 | |

 | Push |

 +---------------------------------+

4. FSM in Object-Oriented Systems

In Object-Oriented Software Engineering (OOSE), FSMs can be used to model the lifecycle

and behavior of objects in different states. FSMs can help describe how objects should behave

depending on the state they are in.

Example: ATM Machine

 States of the ATM machine:

o Idle: The ATM is waiting for the user to insert a card.

o Card Inserted: The ATM has detected the card and is awaiting the PIN.

o PIN Entered: The user has entered the correct PIN and is ready for transactions.

o Transaction in Progress: The ATM is processing a transaction, like a withdrawal.

o Transaction Complete: The transaction has been completed, and the ATM returns

to the Idle state.

 Events:

o Insert Card: The user inserts a card into the ATM.

o Enter PIN: The user enters the PIN.

o Select Transaction: The user selects a transaction (e.g., withdrawal).

o Complete Transaction: The transaction is finished.

 FSM Diagram:

pgsql

Copy

+------------+ Insert Card +----------------+ Enter PIN +-------------------+

| Idle | -------------> | Card Inserted | -------------> | PIN Entered |

+------------+ +----------------+ +-------------------+

 ^ | |

 | Select Transaction |

 | | |

 | +------------------+ |

 | | Transaction in | |

 | | Progress | <---------------------+

 | +------------------+ |

 | | |

 | Complete Transaction |

 | | |

 +--------------------------------+--------------------------------------+

 |

 +------------------+

 | Transaction |

 | Complete |

 +------------------+

5. Real-Life Example of FSMs

Example 1: Traffic Light System

A Traffic Light System can be modeled using FSMs with the following states:

 Red Light: The light is red, and vehicles must stop.

 Yellow Light: The light is yellow, and vehicles should prepare to stop.

 Green Light: The light is green, and vehicles can go.

 Events:

o Timer Expiry: The timer expires and triggers a change in the light color.

 FSM Diagram:

lua

Copy

+------------+ Timer Expired +------------+ Timer Expired +------------+

| Red Light | -----------------> | Yellow Light | -----------------> | Green Light |

+------------+ +------------+ +------------+

 ^ | |

 | Timer Expired Timer Expired

 +--+

Example 2: Vending Machine

A Vending Machine has different states based on user interaction:

 Idle: The machine is waiting for the user to insert money.

 Money Inserted: The machine has received money but is waiting for the user to select a

product.

 Product Dispensed: The machine dispenses the product and returns to the Idle state.

 Events:

o Insert Money: The user inserts money into the machine.

o Select Product: The user selects a product.

o Dispense Product: The machine dispenses the product and returns to Idle.

 FSM Diagram:

mathematica

Copy

+------------+ Insert Money +----------------+ Select Product +-------------------+

| Idle | -----------------> | Money Inserted | ----------------->| Product Dispensed |

+------------+ +----------------+ +-------------------+

6. Why Use FSMs in Object-Oriented Design?

FSMs are useful in object-oriented design for the following reasons:

1. State Management: FSMs help manage the states of an object or system and define how

the system should behave in each state.

2. Clear Structure: FSMs provide a clear, structured way to visualize and define the

lifecycle and behavior of objects.

3. Event-Driven: FSMs align well with event-driven programming, where certain actions

trigger specific behaviors in a system.

4. Predictability: FSMs help ensure that system behavior is predictable and consistent,

especially in complex scenarios.

5. Flexibility: FSMs are flexible, allowing for the easy addition of new states and transitions

as the system evolves.

7. Conclusion

Finite State Machines (FSM) are a powerful concept in Object-Oriented Software Engineering

for modeling systems where the behavior is defined by a limited set of states and transitions. FSMs

are widely used to design systems that respond to events and exhibit different behaviors depending

on their current state. They are especially useful for creating systems with clear, predictable

behavior, such as user interfaces, game mechanics, and workflow processes.

FSMs provide a structured, formal way to model the system's behavior, making it easier to

understand, design, and implement complex systems.

Petri Nets in Object-Oriented Software Engineering (OOSE)

Petri Nets are a mathematical modeling tool used to describe and analyze the behavior of systems

that exhibit concurrent, asynchronous, distributed, or parallel behavior. In Object-Oriented

Software Engineering (OOSE), Petri Nets are often used to model the flow of control and data,

particularly in systems that involve multiple processes or interactions.

1. What are Petri Nets?

A Petri Net is a graphical and mathematical tool that represents a system as a network of places,

transitions, and arcs. It is particularly useful for modeling systems that have:

 Concurrency: Multiple processes or tasks occurring simultaneously.

 Synchronization: Coordination between processes or tasks.

 Communication: Data transfer between different parts of the system.

Petri Nets are widely used in various domains, including manufacturing systems, communication

protocols, and software systems.

2. Key Elements of Petri Nets

A Petri Net consists of the following basic components:

1. Places:

o Represent the states or conditions in the system.

o Typically depicted as circles.

o Example: In a Document Workflow System, places could represent different

stages, such as "Document Drafting", "Document Review", and "Document

Approved".

2. Transitions:

o Represent the events or actions that cause changes in the system.

o Typically depicted as rectangles or bars.

o Example: A transition could represent an action like "Submit for Review" or

"Approve Document".

3. Tokens:

o Represent the current state or condition of the system and are placed in the places.

o The presence or absence of a token in a place indicates whether the system is in a

particular state.

o Example: A token in the "Document Drafting" place indicates that the document

is being drafted.

4. Arcs:

o Represent the relationships between places and transitions.

o Arcs connect places to transitions and transitions to places, showing how the

system evolves.

o Example: An arc from the "Document Drafting" place to the "Submit for Review"

transition would represent that the drafting process can trigger the submission for

review.

3. Petri Net Diagram

A Petri Net diagram is a graphical representation of a system's components and their interactions.

In a Petri Net diagram:

 Circles (places) represent conditions or states.

 Rectangles or bars (transitions) represent events or actions that trigger state changes.

 Arcs represent the flow of tokens between places and transitions.

Example: Simple Petri Net for Document Workflow

Let's consider a simple Document Workflow System where a document goes through various

stages:

1. Document Drafting

2. Document Review

3. Document Approval

 Places:

o "Drafting"

o "Under Review"

o "Approved"

 Transitions:

o "Submit for Review"

o "Approve Document"

Petri Net Representation:

lua

Copy

 +-----------+ Submit for Review +-------------+

| Drafting | ----------------------------> | Under Review|

 +-----------+ +-------------+

 | |

 | |

 Approve Document |

 | |

 +-----------+ |

| Approved | <-----------------------------------+

 +-----------+

In this Petri Net:

 Tokens would initially reside in the "Drafting" place when the document is being created.

 The transition Submit for Review moves the token from "Drafting" to "Under Review"

when the document is ready to be reviewed.

 The transition Approve Document moves the token from "Under Review" to "Approved"

once the document is approved.

4. Types of Petri Nets

1. Place/Transition (P/T) Nets:

o The most basic and common form of Petri Nets.

o In P/T nets, places hold tokens, and transitions fire when the required number of

tokens are in the input places.

2. Colored Petri Nets (CPN):

o A more advanced version of Petri Nets that allows tokens to have different colors

(types), enabling the representation of more complex systems.

o Useful for systems that involve different types of data or resources.

3. Timed Petri Nets:

o A variant where transitions are associated with time, representing systems where

timing constraints are important.

o Useful for modeling time-dependent systems, such as real-time software.

5. Characteristics of Petri Nets

 Concurrency: Petri Nets can model concurrent operations, where multiple transitions can

occur simultaneously.

o Example: In a manufacturing process, multiple machines can operate in parallel,

and Petri Nets can model this concurrent behavior.

 Synchronization: Petri Nets can represent systems where transitions need to synchronize

with each other.

o Example: In a multi-threaded software system, multiple processes may need to

wait for each other to complete before proceeding.

 Conflict: Petri Nets can model situations where resources are limited and different

processes may need to compete for the same resource.

o Example: In a database system, multiple users may compete to access the same

record.

 Deadlock: Petri Nets can help detect deadlocks, where processes are stuck in a state,

waiting for resources that never become available.

o Example: In a network protocol, two processes could wait for each other

indefinitely, causing a deadlock.

6. How Petri Nets are Used in Object-Oriented Software Engineering

In OOSE, Petri Nets can be used for several purposes:

1. Modeling Concurrent Systems: Petri Nets are particularly useful for modeling

concurrent processes or multi-threaded systems, where multiple events can happen at the

same time, and the system needs to manage synchronization and conflicts between

processes.

o Example: A banking system might have several concurrent processes like balance

checks, withdrawal requests, and deposit processes. Petri Nets can help model these

interactions.

2. Workflow Modeling: Petri Nets are effective for describing and analyzing workflows and

processes that require synchronization and coordination between different steps.

o Example: A business process like processing an insurance claim can be modeled

using a Petri Net, with places representing steps like "Claim Submitted", "Claim

Under Review", and "Claim Approved".

3. Communication Protocols: Petri Nets can be used to represent communication protocols,

where messages are exchanged between systems, ensuring that the communication flow is

correct and synchronized.

o Example: A client-server protocol for a file transfer system can be modeled using

Petri Nets to ensure that the server responds properly to client requests.

4. Event-Driven Systems: Petri Nets can model systems where state changes are driven by

events, making it useful for event-driven programming.

o Example: A software GUI with buttons and event handlers can be modeled using

Petri Nets, where button presses trigger transitions between states in the application.

7. Advantages of Using Petri Nets

 Visual Representation: Petri Nets provide a clear graphical representation of complex

systems, making it easier to understand and analyze behavior.

 Concurrency Management: Petri Nets excel in modeling concurrent activities that need

to be coordinated or synchronized.

 Formal Analysis: Petri Nets provide a formal method for analyzing system behavior,

including detecting problems such as deadlocks or resource conflicts.

 Versatility: Petri Nets can be extended to handle various complexities, such as timing

(Timed Petri Nets) and different data types (Colored Petri Nets).

8. Limitations of Petri Nets

 Complexity: For very large or highly complex systems, Petri Nets can become difficult to

manage and analyze due to the large number of places, transitions, and arcs.

 Scalability: While Petri Nets are effective for small to medium-sized systems, scaling them

to very large systems may require significant effort and computational resources.

9. Conclusion

Petri Nets provide a powerful and flexible way to model and analyze systems with concurrent,

asynchronous, or distributed behavior. They are especially useful in Object-Oriented Software

Engineering for modeling complex systems, workflows, communication protocols, and event-

driven systems. Petri Nets help in understanding the flow of control, synchronization, and

interactions between components, making them a valuable tool for designing and analyzing

concurrent systems.

