

SNS COLLEGE OF ENGINEERING

Kurumbapalayam(Po), Coimbatore – 641 107 Accredited by NAAC-UGC with 'A' Grade Approved by AICTE, Recognized by UGC & Affiliated to Anna University, Chennai

Department of AI &DS

Course Name – 19AD602 DEEP LEARNING

III Year / VI Semester

Unit 3-DIMENSIONALITY REDUCTION Topic: Linear (PCA, LDA) and manifolds

GULSHAN BANU.A/ AP/AI AND DS / Linear (PCA, LDA) and manifolds/SNSCE

Case Study: Customer Segmentation in an E-commerce Platform

An e-commerce company wants to segment customers based on shopping behavior. PCA is applied to reduce dimensions from a dataset with purchase history, while LDA classifies customers into known groups (e.g., frequent buyers, occasional buyers). Manifold learning methods like t-SNE help visualize clusters to uncover new insights about behavioral patterns.

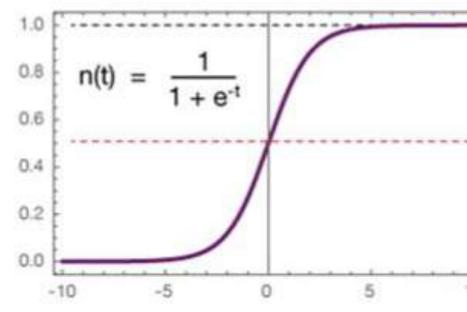
GULSHAN BANU.A/ AP/AI AND DS /Linear (PCA, LDA) and manifolds/SNSCE

Limitations of Logistic Regression

Limited to binary classification problems (2 class)

Can be unstable when classes are well separated

Unstable for low number of examples

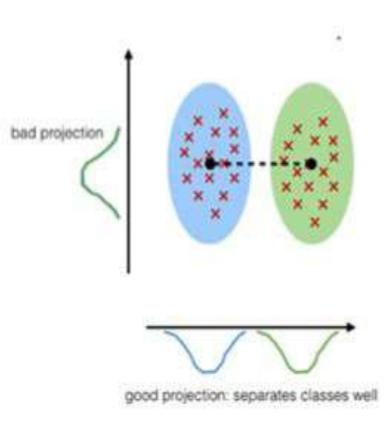


GULSHAN BANU.A/ AP/AI AND DS /Linear (PCA, LDA) and manifolds/SNSCE

Linear Discriminant Analysis (LDA)

Linear method for multi-class classification problems

Project the features in higher dimension space into a lower dimension space.

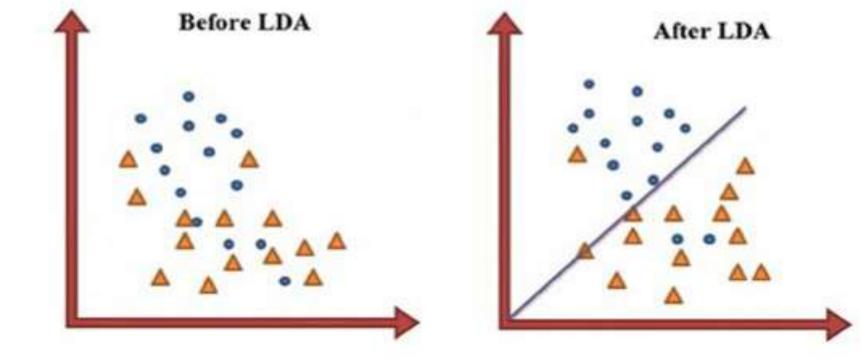


GULSHAN BANU.A/ AP/AI AND DS /Linear (PCA, LDA) and manifolds/SNSCE

Learning LDA

Assuming data is Gaussian (bell-shaped) and consistent variance ...

LDA estimates the mean and variance



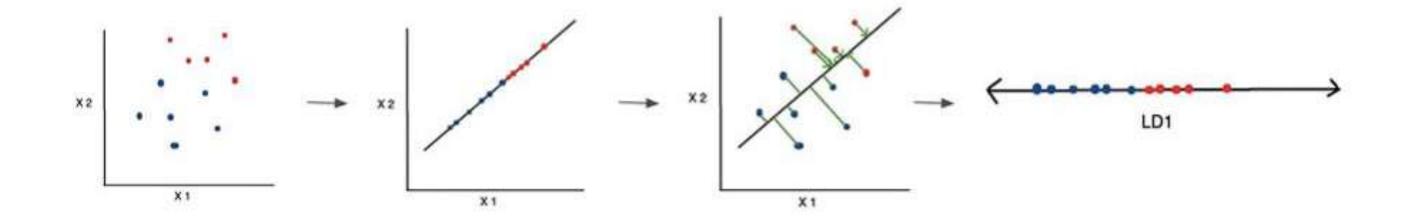
GULSHAN BANU.A/ AP/AI AND DS /Linear (PCA, LDA) and manifolds/SNSCE

Dimensionality Reduction for LDA

Project data into lower dimension

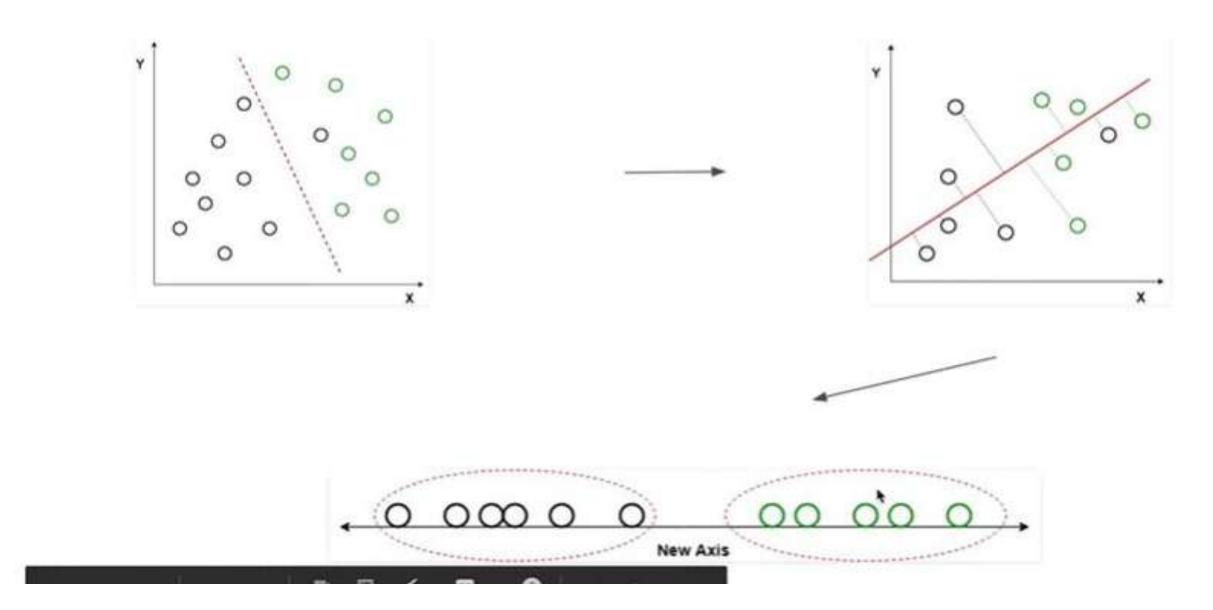
Creates a new axis and projects the data on to the new axis

Criteria: Minimize the variance and maximize the distance between the means



GULSHAN BANU.A/ AP/AI AND DS /Linear (PCA, LDA) and manifolds/SNSCE

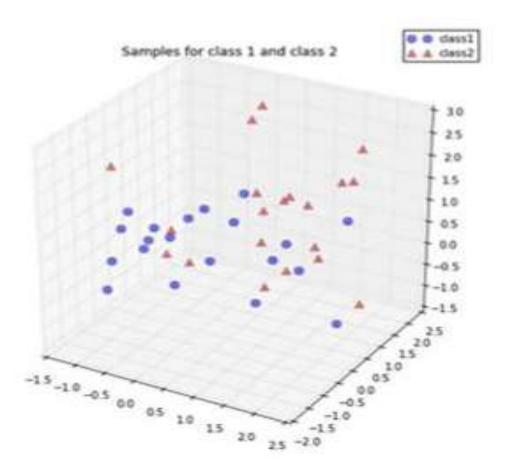
Visualizing Dimensionality Reduction for LDA



GULSHAN BANU.A/ AP/AI AND DS /Linear (PCA, LDA) and manifolds/SNSCE

Dimensionality Reduction

Reducing the dimensions of your feature set.

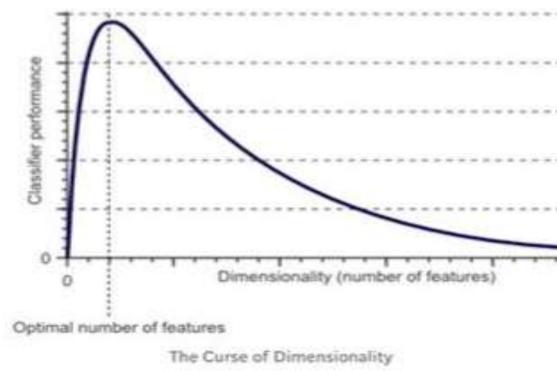


GULSHAN BANU.A/ AP/AI AND DS /Linear (PCA, LDA) and manifolds/SNSCE

Issue with Higher Dimension Data

Classifier accuracy becomes saturated upon addition of features

Features correspond to dimensions in higher space



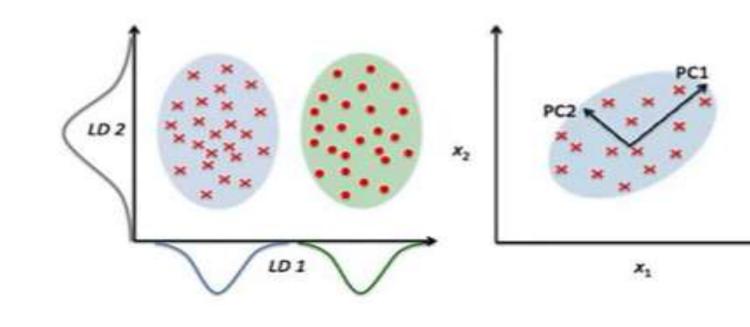
GULSHAN BANU.A/ AP/AI AND DS /Linear (PCA, LDA) and manifolds/SNSCE

Relationship to overfitting

More features == more likely to overfit

(increasingly dependent on training data)

Dimensionality Reduction is usually done to prevent chances of overfitting

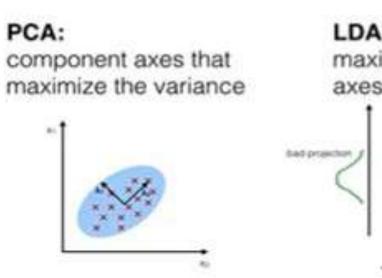


GULSHAN BANU.A/ AP/AI AND DS /Linear (PCA, LDA) and manifolds/SNSCE

PCA rotates and projects data along the direction of increasing variance.

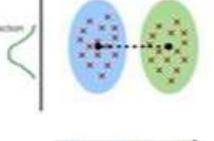
Used for continuous data

Principal components → features with maximum variance



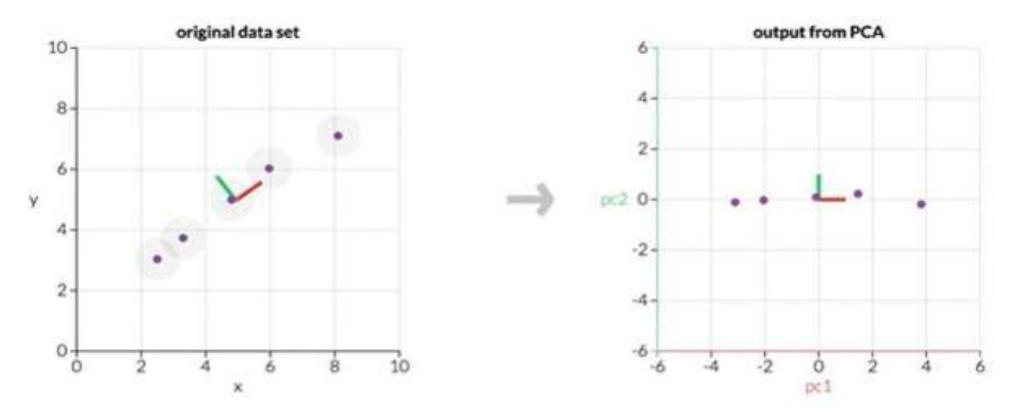
LDA:

maximizing the component axes for class-separation

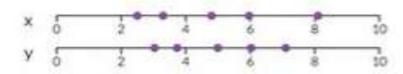


GULSHAN BANU.A/ AP/AI AND DS /Linear (PCA, LDA) and manifolds/SNSCE

PCA



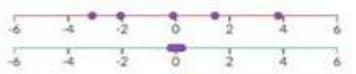
PCA is useful for eliminating dimensions. Below, we've plotted the data along a pair of lines: one composed of the x-values and another of the y-values.



If we're going to only see the data along one dimension, though, it might be better to make that dimension the principal component with most variation. We don't lose much by dropping PC2 since it contributes the least to the variation in the data set.

pc1 pc2

GULSHAN BANU.A/ AP/AI AND DS /Linear (PCA, LDA) and manifolds/SNSCE

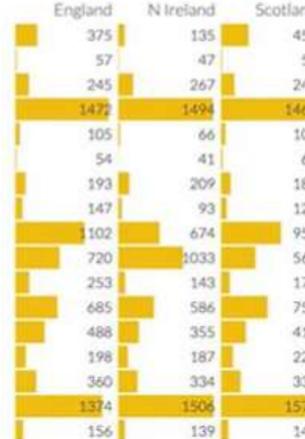


11/23

FITUTIONS

17 Dimension Example

Data on average consumption of 17 types of food in grams per person per week for every country in the UK. Alcoholic drinks **Beverages** Carcase meat Cereals Cheese Confectionery Fats and oils Fish: Fresh fruit Fresh potatoes. Fresh Veg Other meat Other Veg Processed potatoes Processed Veg Soft drinks Sugars



GULSHAN BANU.A/ AP/AI AND DS /Linear (PCA, LDA) and manifolds/SNSCE

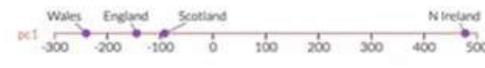
nd	Wales
58	475
53	73
42	227
62	1582
03	103
62	64
84	235
22	160
57	1137
66	874
71	265
50	803
18	570
20	203
37	365
72	1256
47	175

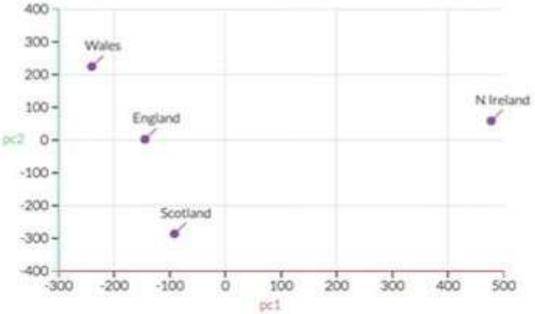
12/23

STITUTIONS

Example (Cont'd)

Here's the plot of the data along the first principal component. Already we can see something is different about Northern Ireland.





GULSHAN BANU.A/ AP/AI AND DS /Linear (PCA, LDA) and manifolds/SNSCE

500

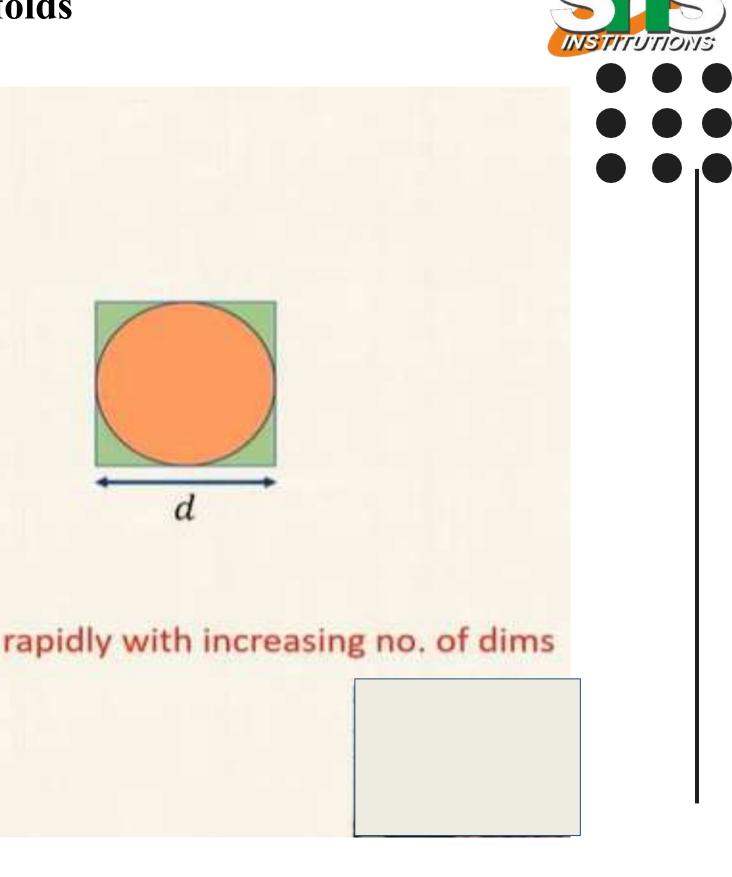
Curse of Dimensionality

Given the dimension D we are interested in the ratio

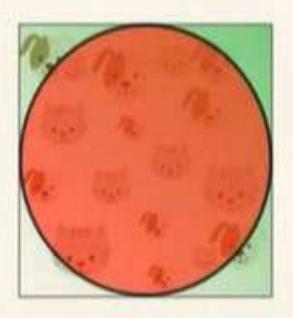
vol. of hypersphere vol. of bounding hypercube

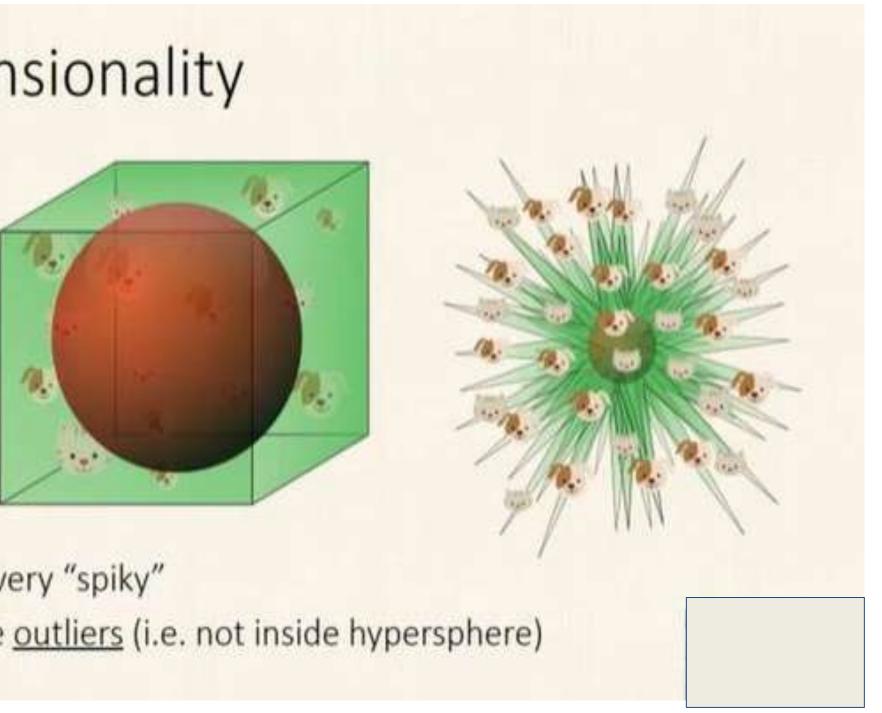
•
$$D = 2$$
 $\frac{\frac{1}{4}\pi d^2}{d^2} = \frac{1}{4}\pi = 0.785$
• $D = 3$ $\frac{\frac{1}{6}\pi d^3}{d^3} = \frac{1}{6}\pi = 0.524$
• $D = 4$ $\frac{\frac{1}{32}\pi^2 d^4}{d^4} = \frac{1}{32}\pi^2 = 0.308$
• $D = 5$ $\frac{\frac{1}{60}\pi^2 d^5}{d^5} = \frac{1}{60}\pi^2 = 0.164$

GULSHAN BANU.A/ AP/AI AND DS /Linear (PCA, LDA) and manifolds/SNSCE



Curse of Dimensionality





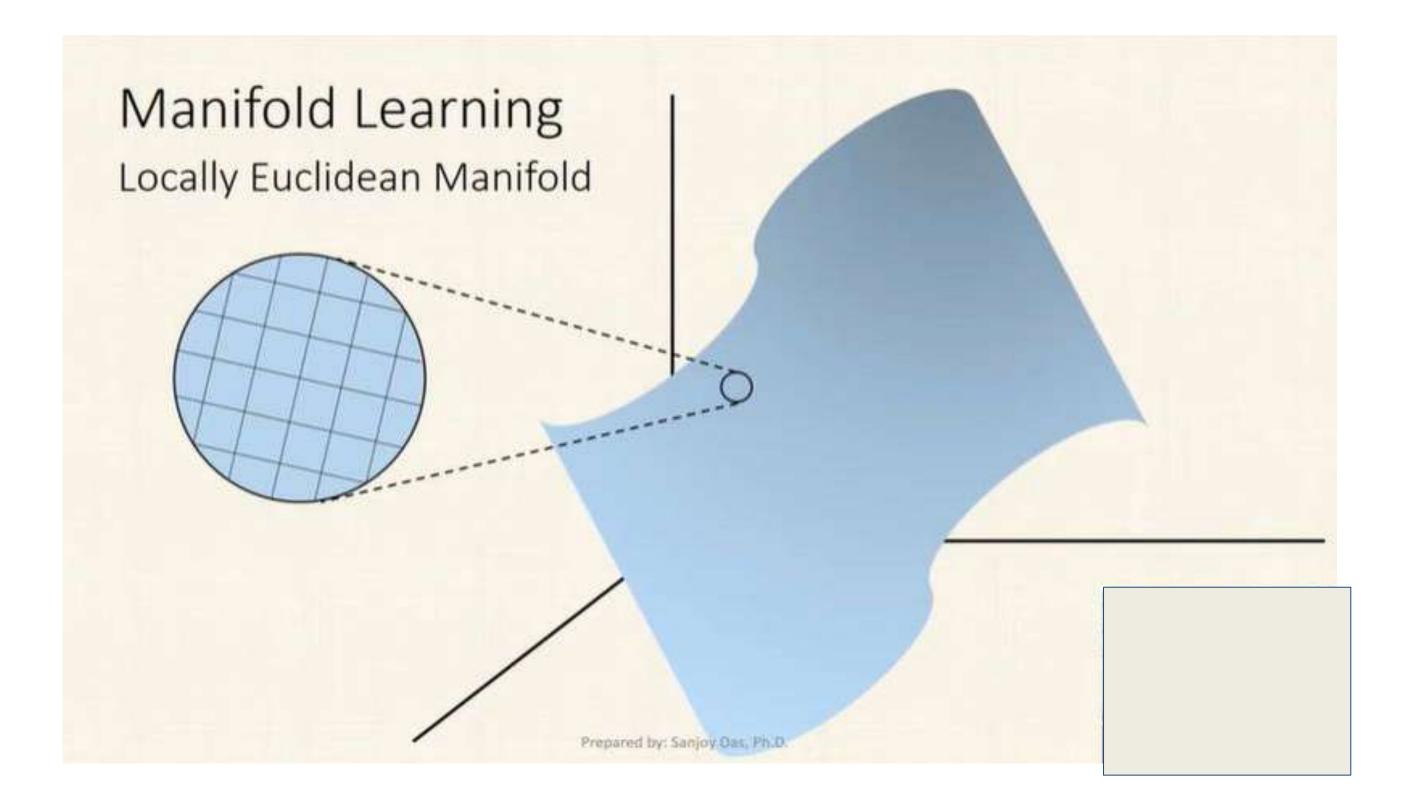
High dimensional space is very "spiky" Most of the data points are outliers (i.e. not inside hypersphere)

GULSHAN BANU.A/ AP/AI AND DS /Linear (PCA, LDA) and manifolds/SNSCE

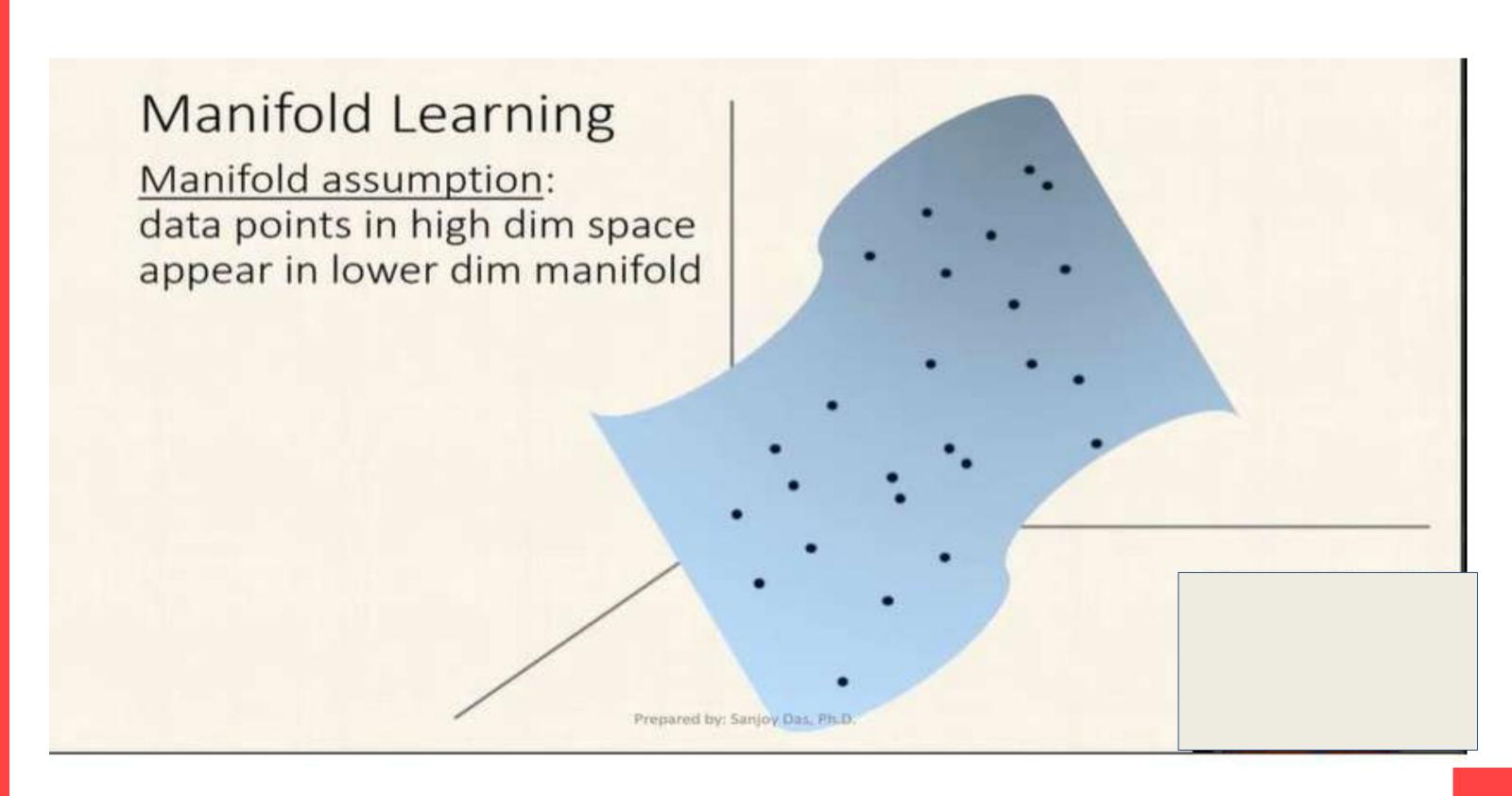
Curse of Dimensionality

- High dimensional data is very difficult to handle
- Difficulty increases rapidly with number of dimensions
- Need to transform high dimensional data into low dimensional data
 - Dimension reduction is needed to make data more tractable
- Linear methods (classical):
 - PCA, LDA, MDS
- Nonlinear methods (manifold learning):
 - LLE, ISOMAP, Laplacian Eigenmaps, MVU, LTSA, etc.

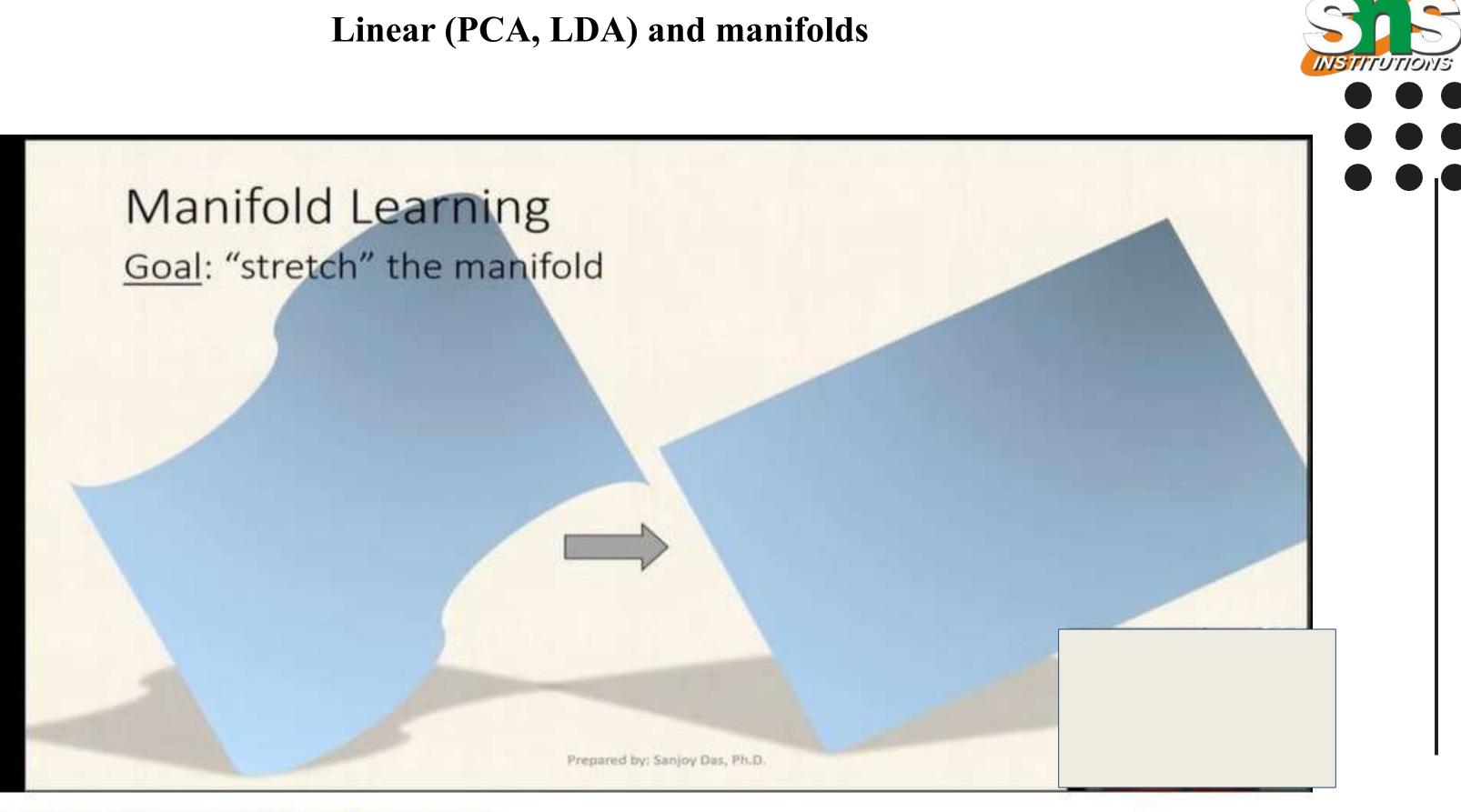
GULSHAN BANU.A/ AP/AI AND DS /Linear (PCA, LDA) and manifolds/SNSCE



GULSHAN BANU.A/ AP/AI AND DS /Linear (PCA, LDA) and manifolds/SNSCE



GULSHAN BANU.A/ AP/AI AND DS /Linear (PCA, LDA) and manifolds/SNSCE



GULSHAN BANU.A/ AP/AI AND DS /Linear (PCA, LDA) and manifolds/SNSCE

GULSHAN BANU.A/ AP/AI AND DS /Linear (PCA, LDA) and manifolds/SNSCE

Metric learning is a machine learning technique that can be used in deep learning to establish the similarity or dissimilarity between objects. It can be used to perform tasks like clustering, information retrieval, and k-NN classification.

Metric learning aims to:

- Reduce the distance between similar objects
- Increase the distance between dissimilar objects
- Learn a representation function that maps objects into an embedded space

In metric learning, a distance metric is learned over objects, which means that a model can be trained to provide a number for any pair of objects. This number represents the degree of similarity between the objects.

Activities:

- 1. PCA: Take a dataset (e.g., Iris), reduce dimensions to 2 or 3, and visualize clusters.
- 2. LDA: Train an LDA classifier using a labeled dataset (e.g., Iris with target labels) and test accuracy on unseen data.
- **3.** Manifold Learning: Apply t-SNE or Isomap to MNIST digits, then visualize the results in 2D to identify clusters.

THANK YOU

GULSHAN BANU.A/ AP/AI AND DS /Linear (PCA, LDA) and manifolds/SNSCE

