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Turion’s

Case Study: Customer Segmentation in an E-commerce Platform
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An e-commerce company wants to segment customers based on shopping behavior. PCA 1s applied to reduce dimensions from a
dataset with purchase history, while LDA classifies customers into known groups (e.g., frequent buyers, occasional buyers). Manifold
learning methods like t-SNE help visualize clusters to uncover new insights about behavioral patterns.
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Limitations of Logistic Regression

Limited to binary classification problems (2 class)
Can be unstable when classes are well separated

Unstable for low number of examples
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Linear Discriminant Analysis (LDA)

Linear method for multi-class classification problems

Project the features in higher dimension space into a lower dimension space.
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Learning LDA

Assuming data is Gaussian (bell-shaped) and consistent variance ...

LDA estimates the mean and variance

Before LDA After LDA
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Dimensionality Reduction for LDA

Project data into lower dimension

Creates a new axis and projects the data on to the new axis

Criteria: Minimize the variance and maximize the distance between the means

X1

X1

LD1
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Dimensionality Reduction

Reducing the dimensions of your feature set.
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Issue with Higher Dimension Data

Classifier accuracy becomes saturated upon addition of features

Features correspond to dimensions in higher space

Classilier porformance

O e ey
0 : Osmensionaity (number of features)

Optimal number of features

The Curse of Dimensionality
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Relationship to overfitting

More features == more likely to overfit
(increasingly dependent on training data)

Dimensionality Reduction is usually done to prevent chances of overfitting
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Principal Component Analysis

PCA rotates and projects data along the direction of increasing variance.
Used for continuous data

Principal components — features with maximum variance

PCA: LDA:
component axes that maximizing the component
maximize the variance axes for class-separation
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PCA

original data set
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PCA is useful for eliminating dimensions. Below, we've

plotted the data along a pair of lines: one composed of the x-

values and another of the y-values,
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If we're going to only see the data along one dimension,
though, it might be better to make that dimension the
principal component with most variation, We don't lose
much by dropping P 2 since it contributes the ieast to the
varation in the data set,
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17 Dimension Example
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Example (Cont’d) ¢

Here's the plot of the data along the first principal component. Already we can see something is different about Northern Ireland,
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Curse of Dimensionality

Given the dimension D we are interested in the ratio

vol. of hypersphere
vol. of bounding hypercube
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Curse of Dimensionality

High dimensional space is very “spiky”
Most of the data points are outliers (i.e. not inside hypersphere)

GULSHAN BANU.A/ AP/AI AND DS /Linear (PCA, LDA) and manifolds/SNSCE -




Linear (PCA, LDA) and manifolds

Curse of Dimensionality

* High dimensional data is very difficult to handle

* Difficulty increases rapidly with number of dimensions

* Need to transform high dimensional data into low dimensional data
* Dimension reduction is needed to make data more tractable

* Linear methods (classical):
* PCA, LDA, MDS

* Nonlinear methods (manifold learning):
* LLE, ISOMAP, Laplacian Eigenmaps, MVU, LTSA, etc.
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Manifold Learning
Locally Euclidean Manifold

Prepared bry: Sanjoy.Oas,'Ph.D

GULSHAN BANU.A/ AP/AI AND DS /Linear (PCA, LDA) and manifolds/SNSCE -




Linear (PCA, LDA) and manifolds

Manifold Learning

Manifold assumption:
data points in high dim space
appear in lower dim manifold

Preopared by: Sanioy Das, D
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Manifold L

Goal: “stre

Prepared by Sanjoy Des, Ph.D
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Manifold Learning
Real example
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Metric learning 1s a machine learning technique that can be used in deep learning to establish the similarity orp @
dissimilarity between objects. It can be used to perform tasks like clustering, information retrieval, and k-NN® @
classification.

Metric learning aims to:

e Reduce the distance between similar objects
e Increase the distance between dissimilar objects

e [earn a representation function that maps objects into an embedded space

In metric learning, a distance metric 1s learned over objects, which means that a model can be trained to provide
a number for any pair of objects. This number represents the degree of similarity between the objects.
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Activities:
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1. PCA: Take a dataset (e.g., Iris), reduce dimensions to 2 or 3, and visualize clusters. ®

2. LDA: Train an LDA classifier using a labeled dataset (e.g., Iris with target labels) and test accuracy on
unseen data.

3. Manifold Learning: Apply t-SNE or Isomap to MNIST digits, then visualize the results in 2D to
1dentify clusters.
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THANK YOU

GULSHAN BANU.A/ AP/AI AND DS /Linear (PCA, LDA) and manifolds/SNSCE




