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Turion’s

Case Study: 00
A tech startup developed a facial recognition system using Inception for feature extraction and ResNet for fac§ e 0

classification. Inception's multi-scale convolution modules improved feature representation, while ResNet's skip
connections tackled vanishing gradient 1ssues, enabling accurate and efficient recognition of diverse faces.

Activity: Practical Experiment

1. Experiment Setup: Train two image classification models on CIFAR-10:
o One using the Inception architecture.
o Another using ResNet-50.
2. Objective: Compare model performance in terms of accuracy, training time, and ability to generalize to unseen

data.
3. Deliverables: Document key findings, including visualization of loss curves, accuracy trends, and qualitative

analysis of model outputs.
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Inception Network

* Motivation:

» Kernels with different sizes because object is
distributed differently in different images

* Deep networks also cause learning problems
and overfitting

* Solution:

* Filters / Kernels with different sizes on same
level, i.e. widen network instead of going
deeper
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*  Convolution with different sizes _— "I' S —
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(a) Inception module, naive version
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Inception Layer Example
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Inception vl (GoogleNet has 9 such modules)
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Computational Complexity. L
S%S 'IR"}\\Q

L X1
* Reducing computational Complexity using 1x1 3d convolution

e 28 x28 x 192 ---- > 5x5 Cony, nc=32, same --- > 28 x 28 x 32
* Computation complexity = 120 million (multiplications) o samman s
o | % S%Exlb
* Using 1 x 1 Convolution {ﬁ"‘ g 7§ h =31

* 28 x 28 x 192 ---- > 1x1 Conv, nc=16, --- > Intermediate is 28x28x16, --- > 5x5
Conv, n;=32, same --->28 x 28 x 32

* 2.4M +10 M = 12.4 Million (multiplications) @« 2ecns sz
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ResNet

* Deep Residual Learning for Image Recognition -
Kaiming He, Xiangyu Zhang, Shaoqging Ren, Jian Sun;
2015

* Extremely deep network — 152 layers
* Deeper neural networks are more difficult to train.

* Deep networks suffer from vanishing and
exploding gradients. -

* Present a residual learning framework to ease the
training of networks that are substantially deeper
than those used previously.
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ResNet

* |LSVRC’15 classification winner (3.57% top 5
error, humans generally hover around a 5-
10% error rate)

Swept all classification and detection
competitions in ILSVRC’15 and COCO’15!
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ResNet

* What happens when we continue stacking deeper layers on a
convolutional neural network?

M’Cl
\ht}mym

20-layer

\ Training emor
\ Test error

[terations lerations

* 56-layer model performs worse on both training and test error
-> The deeper model performs worse (not caused by overfitting)!
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ResNet

* Hypothesis: The problem is an optimization problem. Very
deep networks are harder to optimize.

* Solution: Use network layers to fit residual mapping instead
of directly trying to fit a desired underlying mapping.

* We will use skip connections allowing us to take the activation
from one layer and feed it into another layer, much deeper
into the network. L\

» Use layers to fit residual F(x) = H(x) = x
instead of H(x) directly

olp
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ResNet

Residual Block
Input x goes through conv-relu-conv series and gives us F(x).

That result is then added to the original input x. Let’s call that
H(x) = F(x) + x.

In traditional CNNs, H(x) would just be equal to F(x). So, instead
of just computing that transformation (straight from x to F(x)),
we’re computing the term that we have to add, F(x), to the

input, x. | retu
put, H(x) s
’ X
relu F(x) identity
oW
1
X X
“Plain” layers Residual block
flla At «l 21l
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Skp

ResNet
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ResNet

Full ResNet architecture:
* Stack residual blocks

* Every residual block has two 3x3 conv layers

* Periodically, double # of filters and
downsample spatially using stride 2 (in each
dimension)

* Additional conv layer at the beginning

* No FC layers at the end (only FC 1000 to
output classes)
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THANK YOU
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