
1/X

SNS COLLEGE OF ENGINEERING
Kurumbapalayam (Po), Coimbatore – 641 107

An Autonomous Institution
Accredited by NAAC – UGC with ‘A’ Grade

Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

23CSB101

OBJECT ORIENTED PROGRAMMING

OOPS CONCEPTS

By
M.Kanchana

Assistant Professor/CSE

* INTRODUCTION/ OOPS /KANCHANA MOORTHY/AP/CSE/SNSCE

INTRODUCTION/ OOPS /KANCHANA MOORTHY/AP/CSE/SNSCE

OBJECT ORIENTED PROGRAMMING

* 2/13

Object means a real-world entity such as a pen, chair, table,

computer, watch, etc.

Object-Oriented Programming is a methodology or

paradigm to design a program using classes and objects.

The main aim of OOP is to bind together the data and the

functions that operate on them so that no other part of the

code can access this data except that function.

INTRODUCTION/ OOPS /KANCHANA MOORTHY/AP/CSE/SNSCE

OBJECT ORIENTED PROGRAMMING

* 3/13

It simplifies software development and maintenance by

providing some concepts:

OOPs Concepts:

• Objects

• Class

• Data Abstraction

• Encapsulation

• Inheritance

• Polymorphism

• Dynamic Binding

• Message Passing

One Clever Dude Enjoys Ice

cream, Playing

Daily Music.

INTRODUCTION/ OOPS /KANCHANA MOORTHY/AP/CSE/SNSCE

OBJECT

* 4/13

• Any entity that has state and behavior is known as an

object. For example, a chair, pen, table, keyboard, bike,

etc. It can be physical or logical.

• An Object can be defined as an instance of a class. It

contains an address and takes up some space in memory.

For example “Dog” is a real-life Object, which has some

characteristics like color, Breed, Bark, Sleep, and Eats.

INTRODUCTION/ OOPS /KANCHANA MOORTHY/AP/CSE/SNSCE

CLASS

* 5/13

• Collection of objects is called class.

• It is a logical entity.

• A class can also be defined as a blueprint from which you

can create an individual object.

• Class does not consume any space.

INTRODUCTION/ OOPS /KANCHANA MOORTHY/AP/CSE/SNSCE

CLASS_SYNTAX

* 6/13

class <class_name>

{

field;

method;
}

class_name object_name = new class_name();

7/13

INTRODUCTION/ OOPS /KANCHANA MOORTHY/AP/CSE/SNSCE

Program

* 8/13

class Dog {

String name; //field

void displayName() //method

{

System.out.println("The dog's name is: " + name);

}

public static void main(String[] args)

{

Dog myDog = new Dog(); // object creation

myDog.name = "Buddy";

myDog.displayName();

}

}
Output

The dog's name is: Buddy

INTRODUCTION/ OOPS /KANCHANA MOORTHY/AP/CSE/SNSCE

Data abstraction

* 9/13

• Data abstraction refers to providing only essential

information about the data to the outside world, hiding the

background details or implementation.

INTRODUCTION/ OOPS /KANCHANA MOORTHY/AP/CSE/SNSCE

Data abstraction

* 10/13

• This is achieved using abstract classes and methods.

• An abstract class cannot be instantiated directly and may

contain abstract methods—methods without a body that

must be implemented by subclasses.

• This mechanism enables you to define a template for other

classes to follow.

abstract class Animal {

abstract void displayName();

}

INTRODUCTION/ OOPS /KANCHANA MOORTHY/AP/CSE/SNSCE

Encapsulation

* 11/13

• Binding (or wrapping) code and data together into a single

unit are known as encapsulation. For example, a capsule, it

is wrapped with different medicines.

Encapsulation = Data Hiding + Abstraction

INTRODUCTION/ OOPS /KANCHANA MOORTHY/AP/CSE/SNSCE

Encapsulation

* 12/13

Suppose you have an account in the bank. If your balance

variable is declared as a public variable in the bank software,

your account balance will be known as public, In this case,

anyone can know your account balance.

So, would you like it?

INTRODUCTION/ OOPS /KANCHANA MOORTHY/AP/CSE/SNSCE

Encapsulation

* 13/13

We declare balance variable as private for making your

account safe, so that anyone cannot see your account balance.

The person who has to see his account balance, will have to

access only private members through methods defined inside

that class and this method will ask your account holder name

or user Id, and password for authentication.

INTRODUCTION/ OOPS /KANCHANA MOORTHY/AP/CSE/SNSCE

Encapsulation

* 14/13

Data hiding

It prevents to access data members (variables) directly from

outside the class so that we can achieve security on data.

Encapsulation = Data Hiding + Abstraction

public class Account

{

private double balance;

public double getbalance()

{

return balance;

} }

INTRODUCTION/ OOPS /KANCHANA MOORTHY/AP/CSE/SNSCE

Encapsulation

* 15/13

class Dog

{

private String name;

public void setName(String n)

{

name = n;

}

void displayName()

{

System.out.println("The dog's name is: " + name);

}

public static void main(String[] args)

{

Dog myDog = new Dog();

myDog.setName(“SubraMani”);

myDog.displayName();

}

}

Output:

The dog's name is: SubraMani

INTRODUCTION/ OOPS /KANCHANA MOORTHY/AP/CSE/SNSCE

Encapsulation

* 16/13

✔ Private field (name) → Cannot be accessed directly.

✔ Public method (setName()) → Controls how data is modified.

✔ Public method (displayName()) → Controls how data is accessed.

public: The member is accessible from any other class, anywhere.

private: The member is accessible only within the same class.

INTRODUCTION/ OOPS /KANCHANA MOORTHY/AP/CSE/SNSCE

Inheritance

* 17/13

• Inheritance in Java is a mechanism in which one object

acquires all the properties and behaviors of a parent

object

• Inheritance allows the user to reuse the code whenever

possible and reduce its redundancy.

INTRODUCTION/ OOPS /KANCHANA MOORTHY/AP/CSE/SNSCE

Inheritance

* 18/13

• subclass (child) - the class that inherits from another class

• superclass (parent) - the class being inherited from

To inherit from a class, use

the extends keyword.

class Subclass extends Superclass

{

//methods and fields

}

INTRODUCTION/ OOPS /KANCHANA MOORTHY/AP/CSE/SNSCE

Inheritance

* 19/13

class Animal {

String name;

void DisplayName() {

System.out.println("The animal's

name is: " + name);

}

}

class Dog extends Animal {

void setName(String name) {

this.name = name;

}

}

class Cat extends Animal {

void setName(String name) {

this.name = name;

}

}

public class Main {

public static void main(String[]

args) {

Dog myDog = new Dog();

myDog.setName("Wolffff");

myDog.DisplayName();

Cat myCat = new Cat();

myCat.setName("Tigerrr");

myCat.DisplayName();

}

}

INTRODUCTION/ OOPS /KANCHANA MOORTHY/AP/CSE/SNSCE

Inheritance

* 20/13

Output

The animal's name is: Wolffff

The animal's name is: Tigerrr

INTRODUCTION/ OOPS /KANCHANA MOORTHY/AP/CSE/SNSCE

Inheritance Types

* 21/13

INTRODUCTION/ OOPS /KANCHANA MOORTHY/AP/CSE/SNSCE

Polymorphism

* 22/13

Polymorphism means "many forms", and it occurs when

we have many classes that are related to each other by

inheritance.

For Example:- Suppose if you are in a classroom that time

you behave like a student, when you are in the market at

that time you behave like a customer,when you at your

home at that time you behave like a son or daughter, Here

one person present in different-different behaviours.

INTRODUCTION/ OOPS /KANCHANA MOORTHY/AP/CSE/SNSCE

Types of Polymorphism

* 23/13

1.Compile-time Polymorphism (Static Polymorphism):

Compile-time polymorphism occurs when the method to

be executed is determined at compile time (before the

program runs). The most common example is Method

Overloading.

• Java chooses the correct method based on the method

signature (the number and types of parameters)

1. Compile time polymorphism / Method Overloading

2. Runtime polymorphism / Method Overriding

INTRODUCTION/ OOPS /KANCHANA MOORTHY/AP/CSE/SNSCE

Types of Polymorphism

* 24/13

class Dog {

String name;

void displayName()

{

System.out.println("The dog's name is: " + name);

}

void displayName(String owner)

{

System.out.println("The dog's name is: " + name " and its owner is: " + owner);

}

public static void main(String[] args)

{

Dog myDog = new Dog(); // object creation

myDog.name = "Buddy";

myDog.displayName();

myDog.displayName(“Babu”);

}

}

Output:

The dog's name is: Buddy

The dog's name is: Buddy

and its owner is: John

INTRODUCTION/ OOPS /KANCHANA MOORTHY/AP/CSE/SNSCE

Types of Polymorphism

* 25/13

2. Run-time Polymorphism (Dynamic Polymorphism):

Run-time polymorphism occurs when the method to be

executed is determined at runtime (when the program is

running). The most common example is Method

Overriding.

The method called depends on the actual object type

(not the reference type).

Runtime polymorphism is a concept that uses dynamic binding.

INTRODUCTION/ OOPS /KANCHANA MOORTHY/AP/CSE/SNSCE

Run Polymorphism

* 26/13

class Animal {

String name;

void relation() { // Overridable method

System.out.println("Animals have different

relations.");

}

void setName(String name) { // Overridable

method

System.out.println("The animal's name is: "

+ name);

}

}

class Dog extends Animal {

@Override

void relation() {

System.out.println("Wolves and dogs are

related.");

}

@Override

void setName(String name) {

System.out.println("The animal's name is

from Dog class: " + name);

}

}

class Cat extends Animal {

@Override

void relation() {

System.out.println("Tigers and cats are related.");

}

@Override

void setName(String name) {

System.out.println("The animal's name is from Cat

class: " + name);

}

}

public class Main {

public static void main(String[] args) {

Animal myAnimal; // Parent class reference

myAnimal = new Dog(); // Dog object assigned

myAnimal.setName("Wolffff");

myAnimal.relation();

myAnimal = new Cat(); // Cat object assigned

myAnimal.setName("Tigerrr");

myAnimal.relation();

}

}

INTRODUCTION/ OOPS /KANCHANA MOORTHY/AP/CSE/SNSCE

Run Polymorphism

* 27/13

Output

The animal's name is from dog class: Wolffff

wolves and dogs are related

The animal's name is from Cat class: Tigerrr

Tiger and Cats are related

INTRODUCTION/ OOPS /KANCHANA MOORTHY/AP/CSE/SNSCE

Dynamic Binding

* 28/13

• Dynamic Binding (also called Late Binding) refers to the

process where the method to be called is determined at

runtime rather than compile time.

• It happens when a parent class reference is used to refer to a

child class object and an overridden method is invoked.

Dynamic binding enables runtime polymorphism.

INTRODUCTION/ OOPS /KANCHANA MOORTHY/AP/CSE/SNSCE* 29/13

class Animal {

String name;

void DisplayName(String name) {

System.out.println("The animal's

name is from animal class: " + name);

}

}

class Dog extends Animal {

void setName(String name) {

System.out.println("The animal's

name is from dog class: " + name);

}

}

class Cat extends Animal {

void setName(String name) {

System.out.println("The animal's name

is from Cat class: " + name);

}

}

public class Main {

public static void main(String[]

args) {

Animal myDog = new Dog();

Dog mydog= new Dog();

mydog.setName("Wolffff");

myDog.DisplayName("Dog");

Animal myCat = new Cat();

Cat mycat= new Cat();

mycat.setName("Tigerrr");

myCat.DisplayName("Cat");

}

}

Dynamic Binding

INTRODUCTION/ OOPS /KANCHANA MOORTHY/AP/CSE/SNSCE* 30/13

Output

The animal's name is from dog class: Wolffff

The animal's name is from animal class: Dog

The animal's name is from Cat class: Tigerrr

The animal's name is from animal class: Cat

Dynamic Binding

INTRODUCTION/ OOPS /KANCHANA MOORTHY/AP/CSE/SNSCE

Message Passing

* 31/13

Message passing is a fundamental concept in OOP where objects

communicate with each other by sending and receiving messages (i.e., method

calls). It allows encapsulation and abstraction, making it easier to design

modular and maintainable software.

INTRODUCTION/ OOPS /KANCHANA MOORTHY/AP/CSE/SNSCE

Program

* 32/13

class Dog {

String name; //field

void displayName() //method

{

System.out.println("The dog's name is: " + name);

}

public static void main(String[] args)

{

Dog myDog = new Dog(); // object creation

myDog.name = "Buddy"; // Message passing (Method call)

myDog.displayName();// Message passing (Method call)

}

}
Output

The dog's name is: Buddy

INTRODUCTION/ OOPS /KANCHANA MOORTHY/AP/CSE/SNSCE

PUZZLE

* 33/13

• A father passes down certain characteristics to his child. The child can use these traits but

may also develop their own.

• Imagine a button on a website. When you click it, sometimes it submits a form, sometimes

it opens a new page, and sometimes it plays a sound.

• You have a personal diary with a lock. Only you can read or write in it. However, others

can ask you certain questions, and you decide whether to share the answers.

• An architect creates a blueprint for a house. The blueprint does not show actual bricks,

paint, or furniture—only the structure and design. Different builders can use this

blueprint to construct houses with different materials.

* INTRODUCTION/ OOPS /KANCHANA MOORTHY/AP/CSE/SNSCE 34/13

THANK YOU

