
SNS COLLEGE OF ENGINEERING
Kurumbapalayam (Po), Coimbatore – 641 107

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

COURSE NAME : 23CSB101- OBJECT ORIENTED PROGRAMMING

I YEAR /II SEMESTER

Unit I – INTRODUCTION TO OOP AND JAVA

Topic : Overview of JAVA

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

Topics to be covered

• Overview of Java

• Three Principles of Java

• Java Program Structure

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

Overview of Java

• Java is a high-level, object-oriented programming language developed by

James Gosling at Sun Microsystems (now owned by Oracle) in 1995.

• It is designed to be platform-independent, secure, and reliable, making it

one of the most widely used programming languages in the world.

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

Key Characteristics of Java

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

1. Simple – Java has a clean and easy-to-understand syntax, similar to C++.

2. Object-Oriented – Everything in Java revolves around objects and classes.

3. Platform-Independent – Java follows the "Write Once, Run Anywhere"

(WORA) principle using the Java Virtual Machine (JVM).

4. Secure – Java includes security features like bytecode verification,

sandboxing, and exception handling.

Cont…

Key Characteristics of Java

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

5. Robust – Java provides strong memory management (Garbage Collection)

and exception handling.

6. Multithreaded – Java supports concurrent execution of multiple tasks.

7. High Performance – Java uses Just-In-Time (JIT) compilation for faster

execution.

8. Distributed – Java supports networking and remote method invocation (RMI)

for distributed applications.

9. Dynamic – Java supports dynamic class loading and runtime binding.

Java Architecture

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

• Java Development Kit (JDK) – Includes the compiler, libraries, and tools to

develop Java applications.

• Java Runtime Environment (JRE) – Provides libraries and JVM to run Java

applications.

• Java Virtual Machine (JVM) – Converts Java bytecode into machine code for

execution.

Java Applications

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

•Web Development (Spring, Hibernate, Servlets)

•Mobile Applications (Android Development)

•Enterprise Applications (Banking, E-commerce)

•Game Development (LibGDX, jMonkeyEngine)

•Cloud Computing & Big Data (Hadoop, Apache Spark)

Overview of Java

Two Paradigms : All computer programs consist of two elements: code

and data. Furthermore, a program can be conceptually organized

around its code or around its data. These are the two paradigms that

govern how a program is constructed. The first way is called the

process-oriented model. This approach characterizes a program as a

series of linear steps (that is, code). The process-oriented model can

be thought of as code acting on data. Procedural languages such as

C employ this model to considerable success.

Overview of Java

To manage increasing complexity, the second approach, called

object oriented programming, was conceived. Object-oriented

programming organizes a program around its data (that is, objects)

and a set of well-defined interfaces to that data. An object-oriented

program can be characterized as data controlling access to code.

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

Overview of Java

Abstraction: An essential element of object-oriented

programming is abstraction. A powerful way to manage

abstraction is through the use of hierarchical classifications. The

data from a traditional process-oriented program can be

transformed by abstraction into its component objects.

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

The Three OOP Principles

Three OOP principles are encapsulation, inheritance, and polymorphism.

Encapsulation : Encapsulation is the mechanism that binds together

code and the data it manipulates, and keeps both safe from outside

interference and misuse. One way to think about encapsulation is as a

protective wrapper that prevents the code and data from being arbitrarily

accessed by other code defined outside the wrapper.

Access to the code and data inside the wrapper is tightly controlled

through a well-defined interface.

The Three OOP Principles
Encapsulation

In java a class defines the structure and behavior (data and code) that

will be shared by a set of objects. Each object of a given class contains

the structure and behavior defined by the class, as if it were stamped

out by a mold in the shape of the class. For this reason, objects are

sometimes referred to as instances of a class. Thus, a class is a

logical construct; an object has physical reality.

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

The Three OOP Principles
Encapsulation

When you create a class, you will specify the code and data that constitute

that class. Collectively, these elements are called members of the class.

Specifically, the data defined by the class are referred to as member

variables or instance variables. The code that operates on that data is

referred to as member methods or just methods. In Java programs, the

methods define how the member variables can be used. This means that

the behavior and interface of a class are defined by the methods that

operate on its instance data.

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

The Three OOP Principles
Encapsulation

When you create a class, you will specify the code and data that constitute

that class. Collectively, these elements are called members of the class.

Specifically, the data defined by the class are referred to as member

variables or instance variables. The code that operates on that data is

referred to as member methods or just methods. In Java programs, the

methods define how the member variables can be used. This means that

the behavior and interface of a class are defined by the methods that

operate on its instance data.

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

The Three OOP Principles
Encapsulation

Each method or variable in a class may be marked private or public. The

public interface of a class represents everything that external users of the

class need to know, or may know. The private methods and data can only

be accessed by code that is a member of the class. Therefore, any other

code that is not a member of the class cannot access a private method or

variable. Since the private members of a class may only be accessed by

other parts of your program through the class’public methods, one can

ensure that no improper actions take place.

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

The Three OOP Principles
Encapsulation

The Three OOP Principles
Inheritance

Inheritance is the process by which one object acquires the properties of

another object. This is important because it supports the concept of

hierarchical classification.

Example:

If wanted to describe a more specific class of animals, such as mammals,

they would have more specific attributes, such as type of teeth and

mammary glands. This is known as a subclass of animals, where animals

are referred to as mammals’superclass.

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

The Three OOP Principles
Inheritance

Since mammals are simply more precisely specified animals, they inherit all

of the attributes from animals. A deeply inherited subclass inherits all of

the attributes from each of its ancestors in the class hierarchy.

Inheritance interacts with encapsulation as well. If a given class

encapsulates some attributes, then any subclass will have the same attributes

plus any that it adds as part of its specialization. This is a key concept that

lets object-oriented programs grow in complexity linearly rather than

geometrically. A new subclass inherits all of the attributes of all of its

ancestors.

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

The Three OOP Principles
Inheritance

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

The Three OOP Principles
Polymorphism

Polymorphism (from Greek, meaning “many forms”) is a feature that allows

one interface to be used for a general class of actions. The specific action

is determined by the exact nature of the situation.

Example:

Consider a stack (which is a last-in, first-out list). One need a program that

requires three types of stacks. One stack is used for integer values, one for

floating-point values, and one for characters. The algorithm that implements

each stack is the same, even though the data being stored differs.

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

The Three OOP Principles
Polymorphism

In a non–object-oriented language, you would be required to create three

different sets of stack routines, with each set using different names. However,

because of polymorphism, in Java you can specify a general set of stack

routines that all share the same names. the concept of polymorphism is often

expressed by the phrase “one interface, multiple methods.” This means

that it is possible to design a generic interface to a group of related activities.

This helps reduce complexity by allowing the same interface to be used to

specify a general class of action. It is the compiler’s job to select the specific

action

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

Basic structure of Java program

Documentation section

❖ Optional to improve the readability of the program

❖ Use comments to include basic information such as
❖ author's name

❖ date of creation

❖ Version

❖ program name

❖ company name

❖ description

❖ The comments may be single-line (//)

multi-line (/* … */)

documentation (/**… */

SNSCE/ AI&DS/ AP / Dr .
N. ABIRAMI

Package Declaration
• Optional. Placed just after the documentation section

• Declare the package name in which the class is placed

• There can be only one package statement in a Java
program. It must be defined before any class and interface
declaration.

• Use the keyword package to declare the package name.

package sample; //where sample is the package name

SNSCE/ AI&DS/ AP / Dr .
N. ABIRAMI

Import Statements
• The package contains the many predefined classes and interfaces.

• To use any class of a particular package, we need to import that class.

• The import statement represents the class stored in the other package.

• It is written before the class declaration and after the package statement.

import java.util.Scanner; //it imports the Scanner class only

import java.util.*; //it imports all the class of the java.util package

• Use the import keyword to import the class.

• import statement is used to either import a specific class or import all classes
of a particular package.

• Can use multiple import statements.

Interface Section
• Optional. Use the interface keyword to create an interface.

• An interface is a slightly different from the class.

• It contains only constants and method declarations.

• It cannot be instantiated. i.e. cannot create instance of an class

• Use interface in classes by using the implements keyword.

• An interface can also be used with other interfaces by using
the extends keyword.

interface car

{

void start();

void stop();

}

Interface Section
interface One
{

public void methodOne();
}

// Implementing the interface
class Three implements One {

public void methodOne()
{

// Implementation of the method
}

interface One
{

void methodOne();
}

// Interface extending defined
interface
interface Three extends One
{

}

Class Definition

• It is vital part of a Java program.

• Use the class keyword to define the class. The class is a blueprint of a

Java program. It contains information about user-defined methods,

variables, and constants.

• Without the class, one cannot create any Java program.

• Every Java program has at least one class that contains the main()

method.

class Student //class definition

{

}

Main Method Class
• The main() method is essential for all Java programs as the execution of

all Java programs starts from the main() method. i.e. it is an entry point

of the class.

• It must be inside the class. Inside the main method, user create objects

and call the methods.

public class Student //class definition

{

public static void main(String args[])

{

//statements

}

}

Methods and behavior
• Defines the functionality of the program.

• The methods are the set of instructions that user want to perform.

• These instructions execute at runtime and perform the specified task.

public class Demo //class definition

{

public static void main(String args[])

{

void display()

{

System.out.println("Welcome to javatpoint");

}

//statements

}

}

Summary

The three OOP principles Polymorphism, Encapsulation, and

Inheritance Work Together When properly applied,

polymorphism, encapsulation, and inheritance combine to

produce a programming environment that supports the

development of far more robust and scalable programs than

does the process-oriented model.

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

