

2/14/202

SNS COLLEGE OF ENGINEERING

Coimbatore-35 An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A+' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF CSE (IoT, Cyber Security including Block chain Technology)

19SB624 – INFORMATION SECURITY IN IOT III YEAR/ V SEMESTER

UNIT 2 – Symmetric & Asymmetric key Ciphers

TOPIC 1 – Block Cipher principles & Algorithms (DES, AES)

19SB624 – INFORMATION SECURITY IN IOT /RANJANI K /AP/IOT/SNSCE

Redesigning Common Mind & Business Towards Excellence

Symmetrical Key Cryptography also known as conventional or singlekey encryption was the primary method of encryption.

Techniques Used in Symmetric Key Cryptography

- Substitution Techniques lacksquare
- **Transposition Techniques** \bullet

Redesigning Common Mind & Business Towards Excellenc

Build an Entrepreneurial Mindset Through Our Design Thinl

Substitution Techniques

Caesar Cipher: Caesar cipher has their predictability is so complete and no complexity is invested.

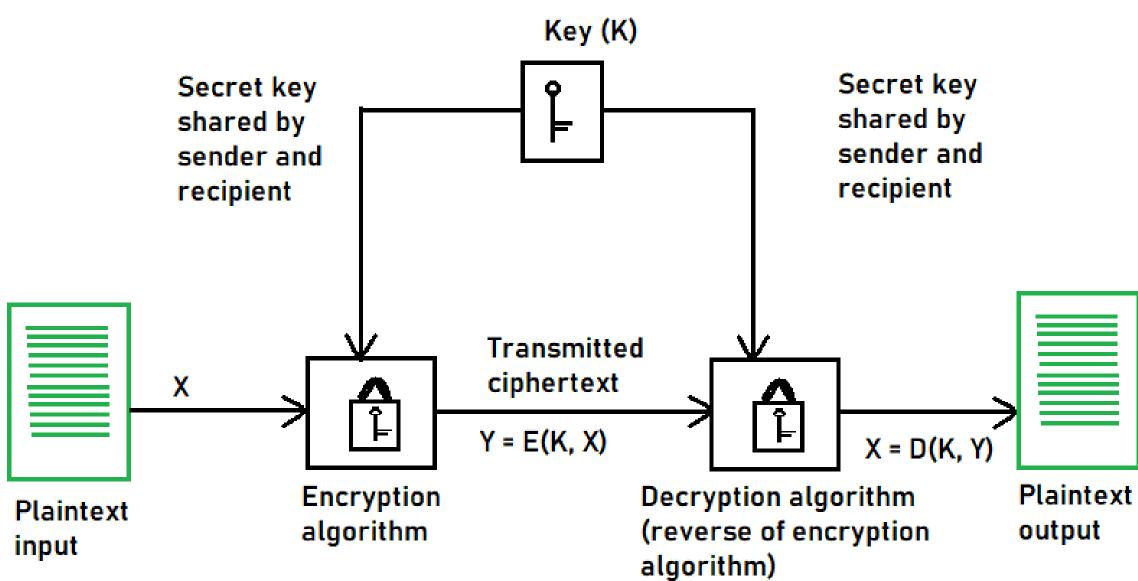
Mono alphabetic Ciphers: This is where the ciphers use one rule of substitution throughout the message. This may involve replacing letters with numbers, symbols, or another set of letters in another order.

Play fair Cipher: Implementation of repeated letters or letter pairs can expose patterns, and cryptanalysis techniques exist to exploit them.

Redesigning Common Mind & Business Towards Excellen

Hill Cipher: This cipher operates on blocks of letters (typically bigrams or trigrams) using a matrix multiplication approach. The Hill ciphers have a limitation on key size and susceptibility towards cryptanalysis for larger key sizes.

Polyalphabetic Ciphers: This is the type of cipher where any one of the letters in the plaintext is substituted by a different letter to keep frequency analysis challenging.


One-Time Pad (OTP): It is a theoretically impossible cipher where the key is a random string of characters that is exactly as long as the message itself. The key is used for a single encryption and then discarded.

Redesigning Common Mind & Business Towards Excellenc

Symmetric Key Cryptography

Redesigning Common Mind & Business Towards Excellence

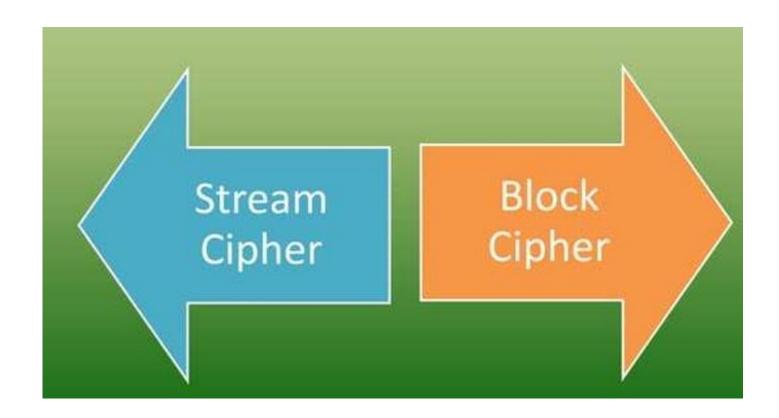
Transposition Techniques

- Transposition techniques rearrange the order of elements in the plaintext message without changing the elements themselves.
- **Rail Fence Cipher:** This is a simple cipher that rearranges the elements by writing the plaintext message in a zigzag pattern, with the different components written in rows (rails) of an imaginary fence and then reading through the columns in a standard order. The key to this is the number of rails used.

Redesigning Common Mind & Business Towards Excellen

Columnar Transposition: In the case of a plaintext message written in columns and then the columns rearranged according to a permutation determined by the key, this cipher is known as columnar transposition.

It is still vulnerable to cryptanalysis techniques that exploit the statistical properties of the language.


Redesigning Common Mind & Business Towards Excellenc

Types of Symmetric Key Cryptography

- Stream Ciphers
- **Block Ciphers** •

19SB624 – INFORMATION SECURITY IN IOT /RANJANI K /AP/IOT/SNSCE

2/14/2025

Redesigning Common Mind & Business Towards Excellence

Stream Ciphers

- The encryption process begins with the stream cipher's algorithm generating a pseudo-random keystream made up of the encryption key and the unique randomly generated number known as the nonce.
- The result is a random stream of bits corresponding to the length \bullet of the ordinary plaintext. Then, the ordinary plaintext is also deciphered into single bits.

Redesigning Common Mind & Business Towards Excellence

- These bits are then joined one by one to the key stream bits, gradually converting the ordinary plaintext into the ciphertext using the XOR bitwise operations.
- When the recipient wants to decrypt the encrypted plaintext, they must generate a new key stream made during the encryption.
- The encrypted plaintext is then deciphered one by one to derive the encrypted plaintext at the recipient's end.

Redesigning Common Mind & Business Towards Excellence

Stream cipher algorithms Rivest Cipher 4 (RC4)

Strengths: The initial appeal of RC4 came from its efficient design and capability to handle variable-length data streams. Salsa20

Strengths: It's fast and efficient, with a simple and elegant design. Most importantly, the security it offers against known attacks is robust. Apart from that, Salsa20 serves as a building block for other cryptographic protocols, exhibiting its versatility.

Redesigning Common Mind & Business Towards Excellence

Grain-128 **Strengths of Grain-128 include** efficiency, lightweight implementation, and the ability to perform well with limited processing power and memory, making it ideal for RFID tags and sensor networks. Importantly, Grain-128 still provides strong security with such simplicity.

Redesigning Common Mind & Business Towards Excellence

Block Cipher

- The result of a block cipher is a sequence of blocks that are then encrypted with the key. The output is a sequence of blocks of encrypted data in a specific order.
- When the cipher btext travels to its endpoint, the receiver uses the same <u>cryptographic key</u> to decrypt the ciphertext block chain to the plaintext message.

Redesigning Common Mind & Business Towards Excellenc

Block cipher algorithms Advanced Encryption Standard (AES)

- It has support for three-length keys: 128 bits, 192 bits, or 256 bits, the most commonly used one is a 128-bit key.
- It includes secure communication, data encryption in storage devices, digital rights management (DRM), and so on.

Data Encryption Standard (DES)

- In DES, the 64-bit blocks of plaintext are encrypted using a 56-bit key. lacksquare
- This weakness caused by the small key size led to the development of a more ${\bullet}$ secure algorithm, called AES.

Redesigning Common Mind & Business Towards Excellence

Triple Data Encryption Algorithm (Triple DES)

- The development of the Triple DES, also called Triple-**<u>DES</u>** or TDEA, was triggered by the weak security resulting from the small key size in the DES.
- Triple DES denotes a method of three times applying the DES algorithm sequentially (encrypt-decrypt-encrypt) on every plaintext block.

Redesigning Common Mind & Business Towards Excellence

Advantages of Symmetric Key Cryptography

- Speed and efficiency
- Scalability
- Simplicity

Redesigning Common Mind & Business Towards Excellence

THANK YOU

2/14/2025

19SB624 – INFORMATION SECURITY IN IOT /RANJANI K /AP/IOT/SNSCE

Redesigning Common Mind & Business Towards Excellence

