

SNS COLLEGE OF ENGINEERING

Kurumbapalayam(Po), Coimbatore – 641 107

An Autonomous Institution

Accredited by NAAC-UGC with 'A' Grade Approved by AICTE, Recognized by UGC & Affiliated to Anna University, Chennai

DEPARTMENT OF INFORMATION TECHNOLOGY

Course Code and Name : 19IT602– CRYPTOGRAPHY AND CYBER SECURITY

III YEAR / VI SEMESTER

Unit 5: CYBER SECURITY SAFEGUARDS AND SECURITY SERVICES

Topic : Cyber Security Safeguards

Message Authentication

- Message authentication is concerned with:
 - Protecting the integrity of a message
 - Validating identity of originator
 - Non-repudiation of origin (dispute resolution)
- Will consider the security requirements

Requirements

- 1. Disclosure
- 2. Traffic analysis
- 3. Masquerade
- 4. Content modification
- 5. Sequence modification
- 6. Timing modification
- 7. Source repudiation
- 8. Destination repudiation
- - Measures to deal with first two attacks:
 In the realm of message *confidentiality*, and are addressed with *encryption*
- Measures to deal with items 3 through 6 Message authentication •
- Measures to deal with items 7 •
 - Digital signature
- - Measures to deal with items 8 Digital signature and protocol to counter the attack

- Message authentication
 - A procedure to verify that messages come from the alleged source and have not been altered
 - Message authentication may also verify sequencing and timeliness
- Digital signature
 - An authentication technique that also includes measures to counter repudiation by either source or destination

Authentication Functions

- Message authentication or digital signature mechanism can be viewed as having two levels
 - At lower level: there must be some sort of functions producing an authenticator – a value to be used to authenticate a message
 - This lower level functions is used as primitive in a higher level authentication protocol

3 classes of function that produce an authenticator

Message Encryption

- Conventional encryption can serve as authenticator
 - Conventional encryption provides *authentication* as well as *confidentiality*
 - Requires recognizable plaintext or other *structure* to distinguish between wellformed legitimate plaintext and meaningless random bits
 - e.g., ASCII text, an appended checksum, or use of layered protocols

Basic Uses of Message Encryption

(a) Conventional encryption: confidentiality and authentication

(b) Public-key encryption: confidentiality

(c) Public-key encryption: authentication and signature

(d) Public-key encryption: confidentiality, authentication, and signature / IT / SNSCE

Ways of Providing Structure

• Annend an error-detecting code (frame check sequence (FCS)) to Source Destination Destination Compare $M \longrightarrow E \longrightarrow E_{K}[M \parallel F(M)]$

(a) Internal error control

(b) External error control

Ways of Providing Structure

- Suppose all the datagrams except the IP header is encrypted.
- If an opponent substituted some arbitrary bit pattern for the encrypted TCP segment, the resulting plaintext would not

Confidentiality and Authentication

Thank You