
SNS COLLEGE OF ENGINEERING
Kurumbapalayam(Po), Coimbatore – 641 107

An Autonomous Institution
Accredited by NAAC-UGC with ‘A’ Grade

Approved by AICTE, Recognized by UGC & Affiliated to Anna
University, Chennai

DEPARTMENT OF COMPUTER SCIENCE AND TECHNOLOGY
Course Code and Name : 19TS601 FULL STACK DEVELOPMENT

Unit 1 : JAVASCRIPT AND BASICS OF MERN STACK
Topic : Event Loop

1JAVASCRIPT AND BASICS OF MERN STACK | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS20-02-2025

Event loop

20-02-2025 2
JAVASCRIPT AND BASICS OF MERN STACK | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS

• Its ability to handle asynchronous tasks efficiently, even though
it is single-threaded.

• JavaScript is a single-threaded language.

• It means that JavaScript executes code one line at a time, in a
sequence.

• The main thread, where all JavaScript code runs, can only do
one task at a time, and there is no way to run multiple pieces of
code in parallel on this thread.

• This might sound limiting, but JavaScript’s design is well-suited
for handling many tasks efficiently.

JavaScript is single-threaded

20-02-2025 3
JAVASCRIPT AND BASICS OF MERN STACK | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS

Event loops work

• Call Stack:
• To keep track of the currently executing function (where the program is

in its execution).

• Callback Queue:
• Asynchronous operations, such as I/O operations or timers, are

handled by the browser or Node.js runtime.

• When these operations are complete, corresponding functions
(callbacks) are placed in the callback queue.

• Event Loop:
• The event loop continuously checks the call stack and the callback

queue. If the call stack is empty, it takes the first function from the
callback queue and pushes it onto the call stack for execution.

20-02-2025 JAVASCRIPT AND BASICS OF MERN STACK | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS 4

20-02-2025 5
JAVASCRIPT AND BASICS OF MERN STACK | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS

Execution:
• The function on top of the call stack is executed.
• If this function contains asynchronous code, it might

initiate further asynchronous operations.
Callback Execution:

• When an asynchronous operation is complete, its callback
is placed in the callback queue.

Repeat:
• The event loop continues this process, ensuring that the

call stack is always empty before taking the next function
from the callback queue.

Microtasks and macrotasks

• In JavaScript, microtasks and macrotasks refer to different types of
tasks in the event loop, which is the mechanism responsible for
handling asynchronous operations.

• These tasks are executed in different phases and have different
priorities within the event loop.

20-02-2025 JAVASCRIPT AND BASICS OF MERN STACK | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS 6

Macrotasks
• Macrotasks are the larger, higher-level tasks that the event loop

processes.

• These include things like I/O operations (network requests, file
reading), timers (e.g., setTimeout, setInterval), and user input
events (clicks, keypresses).

• Examples:setTimeout()

• setInterval()

• I/O operations (e.g., reading files)

• UI rendering events (e.g., painting, reflow)

• Event listeners (e.g., click, keydown)

20-02-2025 JAVASCRIPT AND BASICS OF MERN STACK | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS 7

Microtasks

• Microtasks are smaller tasks that are scheduled to execute after
the currently executing script and before the next event loop
cycle.

• They have a higher priority than macrotasks and will be executed
before any macrotasks.

• Examples:Promises (then, catch, finally handlers)

• MutationObserver callbacks

• queueMicrotask() API

20-02-2025 JAVASCRIPT AND BASICS OF MERN STACK | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS 8

Event Loop Execution Order

20-02-2025 9
JAVASCRIPT AND BASICS OF MERN STACK | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS

1.Start executing synchronous code (code that doesn't
require asynchronous handling).
2.Execute all microtasks in the microtask queue (like
promise callbacks, MutationObserver, etc.).
3.Execute one macrotask from the macrotask queue
(like setTimeout, setInterval, event handlers).
4.Repeat the cycle.

20-02-2025 10
JAVASCRIPT AND BASICS OF MERN STACK | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS

•Microtasks are executed before the browser repaints or
handles other macrotasks. Therefore, microtasks are given
higher priority.
•Macrotasks are handled after the microtasks are
executed, but they are one per event loop cycle.
•Microtasks are typically used for tasks that need to run
after the current task completes but before anything else,
like handling promises

•.

console.log('Start');

// Schedule a macro task (setTimeout)

setTimeout(() => { console.log('Macrotask 1'); }, 0);

// Schedule a microtask (promise)

Promise.resolve().then(() => { console.log('Microtask 1'); });

// Another macrotask

setTimeout(() => { console.log('Macrotask 2'); }, 0);
console.log('End');

• Microtasks: Higher priority, executed after the current
script but before macrotasks.

• Macrotasks: Lower priority, executed after all microtasks
have been processed.

20-02-2025 JAVASCRIPT AND BASICS OF MERN STACK | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS 11

Output

20-02-2025 12
JAVASCRIPT AND BASICS OF MERN STACK | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS

Start
End
Microtask 1
Macrotask 1
Macrotask 2

To write a program that uses the event loop to
simulate a countdown timer

let count = 10;

function countdown()

{

if (count > 0)

{

console.log(count);

count--;

setTimeout(countdown, 1000); // Call countdown again after 1
second }

20-02-2025 JAVASCRIPT AND BASICS OF MERN STACK | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS 13

else

{

console.log("Blast off!");

}

}

console.log("Countdown started...");

countdown();

20-02-2025 JAVASCRIPT AND BASICS OF MERN STACK | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS 14

Note:
- Milliseconds (ms): 1/1000th of a second
- Seconds (s): 1000 ms
- Minutes (m): 60 s = 60,000 ms
- Hours (h): 60 m = 3600 s = 3,600,000 ms

Output

20-02-2025 15
JAVASCRIPT AND BASICS OF MERN STACK | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS

Countdown started...
10
9
8
7
6
5
4
3
2
1
Blast off!

Explanation

20-02-2025 16
JAVASCRIPT AND BASICS OF MERN STACK | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS

1. The countdown function is called initially.
2. The countdown function checks if the count variable is greater

than 0.
3. If it is, the function logs the current count to the console,

decrements the count, and schedules itself to be called again after
1 second using setTimeout.

4. The event loop takes over, executing other tasks (in this case,
logging the count to the console) while waiting for the 1-second
timeout to expire.

5. Once the timeout expires, the event loop calls the countdown
function again, repeating the process until the count reaches 0.

20-02-2025 JAVASCRIPT AND BASICS OF MERN STACK | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS 17

1.What is event loop?

Text Book:
1.Pro MERN Stack, Full Stack Web App Development with
Mongo, Express, React, and Node, Vasan Subramanian, A Press
Publisher, 2019.
Reference:
David Flanagan, “Java Script: The Definitive Guide”, O’Reilly
Media, Inc, 7 th Edition, 2020
2. Matt Frisbie, “Professional JavaScript for Web Developers”
Wiley Publishing, Inc, 4th Edition, ISBN: 978-1-119-36656-0,
2019

20-02-2025 JAVASCRIPT AND BASICS OF MERN STACK | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS 18

20-02-2025
JAVASCRIPT AND BASICS OF MERN STACK | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS

INSTITUTIONS
19

