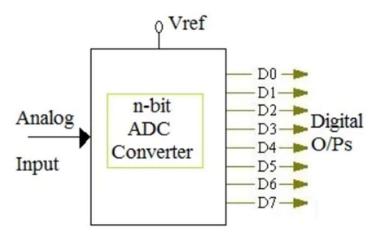


Kurumbapalayam (Po), Coimbatore – 641 107

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING


Sub: Microcontroller Programming And Interfacing Subcode:23ECB202
Unit-II

CLASSIFICATION OF INSTRUCTIONS AND IO PORT PROGRAMMING/ Peripherals of PIC- ADC, DAC

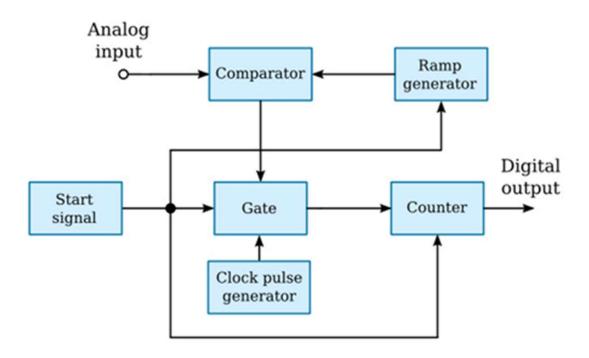
An analog-to-digital (A/D) converter is defined as a device that receives an analog input and supplies a digital output (usually binary or decimal number).

Resolution	Ideal Dynamic range	Minimum Voltage Increment
8 Bit	256:1	3.92 mV
10 Bit	1024:1	0.98 mV
12 Bit	4096:1	0.244 mV
14 Bit	16384:1	61 µV
16 Bit	65536:1	15 µV

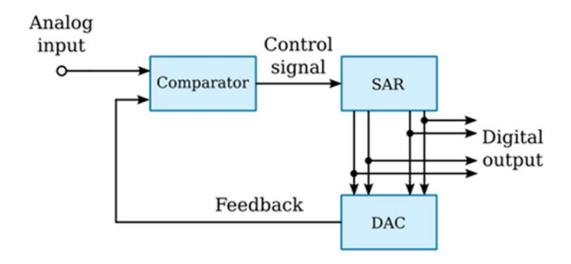
ANALOG to DIGITAL CONVERTOR (ADC)

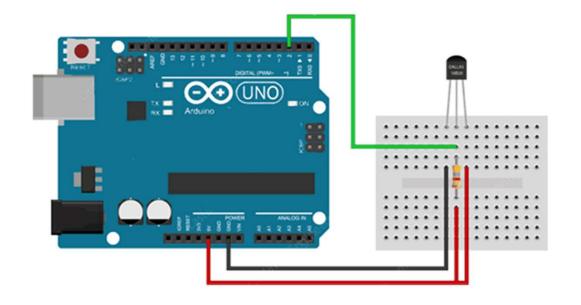
An analog-to-digital (A/D) converter is defined as a device that receives an analog input and supplies a digital output (usually binary or decimal number). In designing A/D conversion devices, several basic requirements must be taken into consideration:

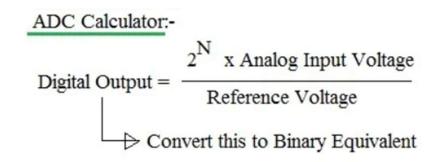
- Sampling Rate
- Resolution
- Conversion Time


Types of ADC

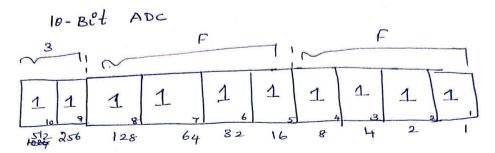
- Ramp-type ADC
- Successive Approximation ADC


Ramp-type ADC


Successive Approximation ADC



Example of ADC



N = Number of bits in ADC converter

Calculation of ADC

Max Hex Value = 3 FF

Maximum resolution:

$$512+256+128+64+32+16+8+4+2+1$$
= 1023

calculation for Converting Analog Voltage to digital Value.

Formula: Resolution & ADC = ADC Reading Refresser a voltage Woltage Measured

Refrence voltage is generally +52

23ECB202/ Peripherals of PIC/ADC/ Dr. Husna/ ECE/SNSCE

0

Lets take the value of analog voltage is 2. Lev

ADC Reading =
$$\frac{1023}{5} \times 2.12$$

$$= 434 (decimal)$$

$$= 182 (Hex)$$

Convert the digital value to analog voltage:

Lets take IB2

Convert to Binary

Ly This bit set to 0.04 Emr

1x0.0048= 0.0048mv

16x0.0048=0.0786mr

2x0.0048 = 0.009 Fmv

32x0.0048=0-1566 mv

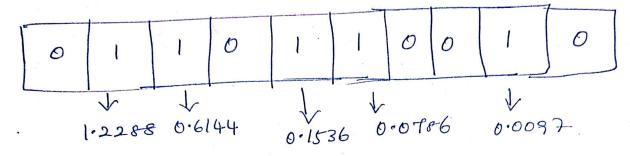
8x 0.0048 = 0.0192mv

64x0.0048 20.3072mV

8x0.0048 = 0.0384mv

128-X0.0048 20.6144mV

1 256x 6.0048 = 1.228-8V


512 XD . 0048 = 2-4576

4.9√ 23ECB202/ Peripherals of PIC/ADC/ Dr. Husna/ ECE/SNSCE

2.4576 1.2288 0.6144 0.3072 0.1536 0.0786 0.0384 0.0192 0.0097 0.0048

= 1.2288 + 0.6144 + 0.1536 + 0.0786 + 0.6097

= 2.08 V

~ 2-12 V