REALIZATION OF GATES USING NOR GATE

SNS COLLEGE OF ENGINEERING

Kurumbapalayam (PO), Coimbatore – 641 107 An Autonomous Institution

Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

REALIZATION OF GATES USING NOR GATE

Dr.G.Arthy Assistant Professor Department of EEE SNS College of Engineering

Realization of gates using NOR gate /Dr.G.Arthy/AP/EEE

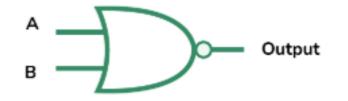
INTRODUCTION TO UNIVERSAL GATES

• What are Universal Gates?

• Why?

What are Universal Gates?

• NAND gate


• NOR gate

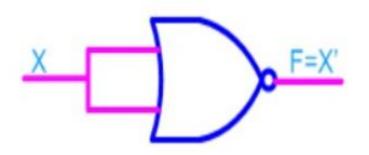
2- Input NOR Gate

Truth Table

Input A	Input B	0 = (A + B)'
0	0	1
0	1	0
1	0	0
1	1	0

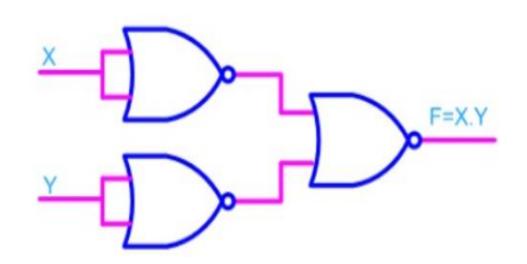
3 Input NOR Gate

Truth Table


Input A	Input B	Input C	X = (A,B,C)
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

NOR as NOT

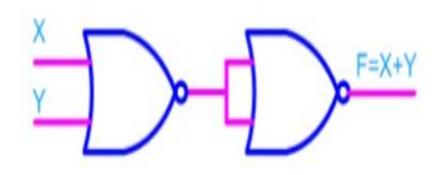
Input	Output	Rule
(X+X)'	= X'	Idempotent



NOR as AND

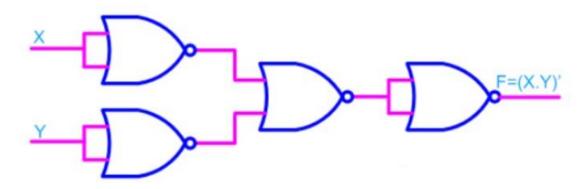
Implementing AND using NOR gates

Input	Output	Rule
((X+X)'+(Y+Y) ')'	=(X'+Y')	Idempotent
	= X".Y"	DeMorgan
	= (X.Y)	Involution



NOR as OR

Input	Output	Rule
((X+Y)'+(X+Y)')'	= ((X+Y)')'	Idempotent
	= X+Y	Involution



NAND USING NOR

Input	Output	Rule
((X+Y)'+(X+Y)')'	=((X+Y)')'	Idempotent
	= X + Y	Involution
	= (X+Y)'	Idempotent

EXOR USING NOR

The output of the XOR gate is given by,

 $Y = \overline{A}B + A\overline{B} = A \oplus B$

Taking the double complement on the right-hand side, we get,

$$Y = \overline{\overline{A \oplus B}} = \overline{A \odot B}$$

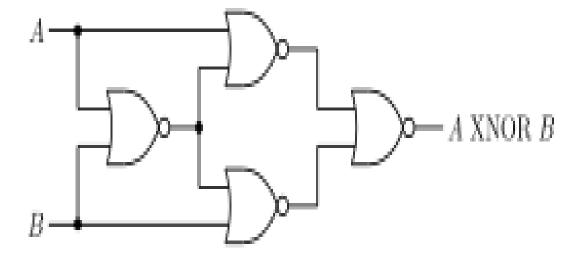
$$\Rightarrow Y = \overline{AB + \overline{A} \cdot \overline{B}}$$

$$\Rightarrow Y = \overline{AB + (\overline{A + B})}$$

$$\Rightarrow Y = \overline{\overline{AB} + (\overline{A + B})}$$

$$\Rightarrow Y = \overline{\overline{AB} + (\overline{A + B})}$$

$$\Rightarrow Y = \overline{\overline{AB} + (\overline{A + B})}$$


Hence, this Boolean expression is equivalent to the output of the XOR gate

EXNOR USING NOR

$$\begin{split} Y &= \overline{\overline{A + (\overline{A + B})}} + \overline{B + (\overline{A + B})} \\ Y &= \overline{\overline{A + (\overline{A + B})}} &= \overline{\overline{B + (\overline{A + B})}} \\ Y &= \overline{A + (\overline{A + B})} &= \overline{B + (\overline{A + B})} \\ Y &= (A + (\overline{A + B})) \cdot (B + (\overline{A + B})) \\ Y &= (A + (\overline{A} \cdot \overline{B})) (B + (\overline{A} \cdot \overline{B})) \\ Y &= (A + \overline{A}) (A + \overline{B}) (\overline{A} + B) (B + \overline{B}) \\ Y &= (A + \overline{A}) (A + \overline{B}) (\overline{A} + B) \\ Y &= (A + \overline{A} + \overline{A} \cdot \overline{B} + A \cdot B + B \cdot \overline{B}) \\ \vdots Y &= A \cdot \overline{A} + \overline{A} \cdot \overline{B} + A \cdot B + B \cdot \overline{B} \\ & \therefore Y &= A \cdot B + \overline{A} \cdot \overline{B} \end{split}$$

1. How many NOR gates are required to implement one EXOR gate.

2. Draw the NAND gate using NOR gates.

