DIGITAL ELECTRONICS: FULL ADDER

SNS COLLEGE OF ENGINEERING

Kurumbapalayam (PO), Coimbatore – 641 107 An Autonomous Institution

Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

FULL ADDER

Dr.G.Arthy Assistant Professor Department of EEE SNS College of Engineering

✓ Adders are used to make arithmetical and logical Units(ALU).

✓ Types of Adders : Half Adders and Full Adders.

FULL ADDER

- ✓ A combinational logic circuit that can add two binary digits (bits) and a carry bit, and produces a sum bit and a carry bit as output is known as a full-adder.
- ✓ It has three input terminals and two output terminals for sum and carry.
- ✓ The full adder circuit is designed by connecting two EX-OR gates two AND gates and one OR gate.

DESIGN OF FULL ADDER

FULL ADDER-TRUTH TABLE

Inputs			Outputs	
Α	В	Cin	Sum	Carry
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

FULL ADDER – K MAP

For S:

Outputs Inputs в Cin Sum А Carry

FULL ADDER - CIRCUIT

Boolean Expression

 $\operatorname{Sum}, S = A \oplus B \oplus \operatorname{C}_{in} = A'B'\operatorname{C}_{in} + A'BC'_{in} + AB'C'_{in} + ABC_{in}$

 $\mathrm{Carry},\,\mathrm{C}=\mathrm{AB}+\mathrm{AC}_{\mathrm{in}}+\mathrm{BC}_{\mathrm{in}}$

APPLICATIONS

•Full adder provides facility to add the carry from the previous stage.

•The power consumed by the full adder is relatively less as compared to half adder.

•Full adder can be easily converted into a half subtractor just by adding a NOT gate in the circuit.

•Full adder is one of the essential part of critic digital circuits like multiplexers.

•Full adder performs operation at higher speed.

1. How many variable K-Map is required to realize a full adder?

2. Write the equation for sum and carry of full adder.

