

SNS COLLEGE OF ENGINEERING

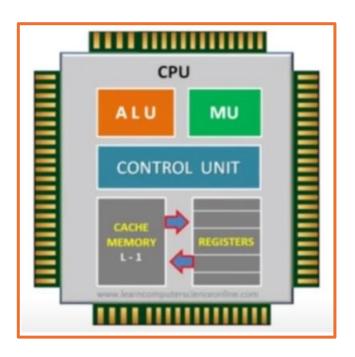
Kurumbapalayam (PO), Coimbatore – 641 107

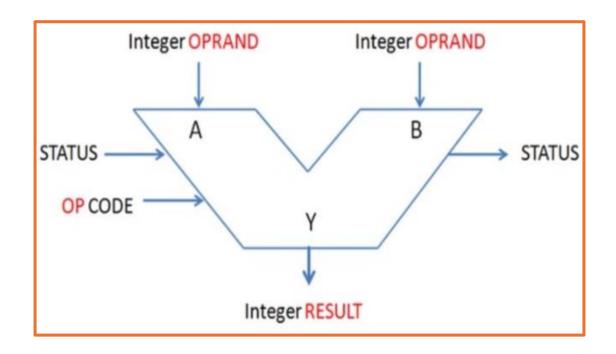
An Autonomous Institution

Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

FULL SUBTRACTOR


Dr.G.Arthy
Assistant Professor
Department of EEE
SNS College of Engineering



SUBTRACTOR

- ✓ Subtractors are used to make arithmetical and logical Units(ALU).
- ✓ Types of Subtractors : Half Subtractors and Full Subtractors.

APPLICATIONS

- •Full subtractors are used in ALU (Arithmetic Logic Unit) in computers CPUs.
- •Full subtractors are extensively used to perform arithmetical operations like subtraction in electronic calculators and many other digital devices.
- •Full subtractors are used in different microcontrollers for arithmetic subtraction.
- •They are used in timers and program counters (PC).
- •Full subtractors are also used in processors to compute addresses, tables, etc.
- •Full subtractors are also used in DSP (Digital Signal Processing) and networking based systems.

FULL SUBTRACTOR

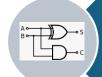
- ✓ A combinational logic circuit that can subtract two binary digits (bits) and a borrow bit, and produces a difference bit and a borrow bit as output is known as a full-subtractor.
- ✓ It has three input terminals and two output terminals for difference and borrow.
- ✓ The full subtractor circuit is designed by connecting two EX-OR gates two AND gates, two NOT and one OR gate.

Full Subtractor

Block Diagram

DESIGN OF FULL SUBTRACTOR

		Truth	Table	
	Input		Output	
J	1	В	Sum	Carry
- ()	0	0	0
-)	-1	1	0
		0	1	0
		1	0	- 1


Step 1 : Write the Truth Table

Step 2 : Draw K-Map

Step 3 :Form the Boolean Expression

Step 4: Draw the circuit Diagram

Input		Output		
Α	В	С	d	b
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

Truth Table for full subtractor

FULL SUBTRACTOR - K MAP

K-map for Difference

0 01 11 10 0 1 1 1 10

Difference (D) = A'B'C + A'BC' + AB'C' + ABC

Difference (D) =
$$A \oplus B \oplus C$$

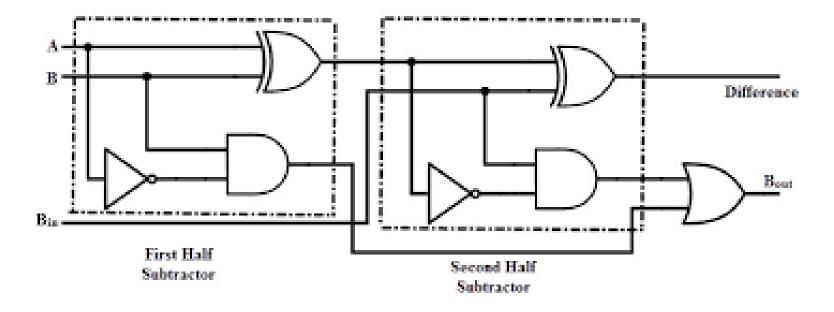
K-map for Borrow

ABC	00	01	11	10
0		1	1	1
1			1	

Borrow = A'B + BC + A'C

	Input		Out	put
Α	В	С	d	b
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

Truth Table for full subtractor


FULL SUBTRACTOR - CIRCUIT

Boolean Expression

Difference (D) = $A \oplus B \oplus C$

Borrow = A'B + BC + A'C

Assessment

1. How many half adders are required to realize a full adder?

2. Write the equation for difference and borrow of full subtractor.

