

SNS COLLEGE OF ENGINEERING

Kurumbapalayam (PO), Coimbatore – 641 107

An Autonomous Institution

Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

SR LATCH

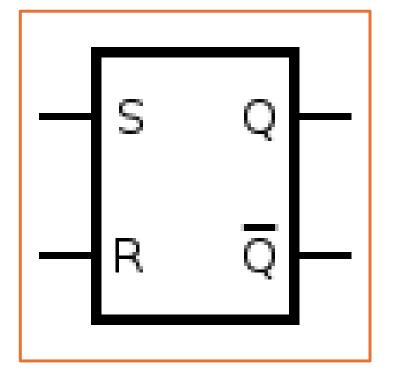
Dr.G.Arthy
Assistant Professor
Department of EEE
SNS College of Engineering

SR LATCH

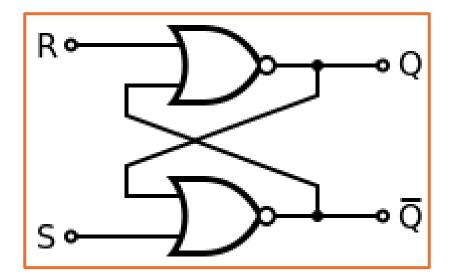
- ✓ Latches are digital circuits that store a single bit of information and hold its value until it is updated by new input signals.
- ✓ They are used in digital systems as temporary storage elements to store binary information.
- ✓ Latches are level-sensitive devices. Latches are useful for the design of the asynchronous sequential circuit. Latches are sequential circuit with two stable states.

SR LATCH

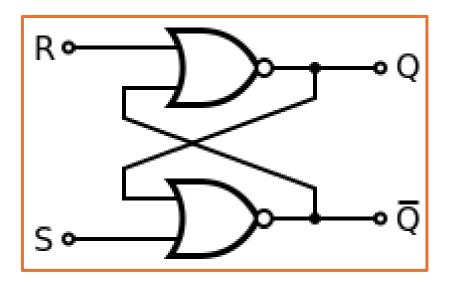
APPLICATIONS


✓ Latches are widely used in digital systems for various applications, including data storage, control circuits, and flip-flop circuits. They are often used in combination with other digital circuits to implement sequential circuits, such as state machines and memory elements.

SR LATCH


✓ SR (Set-Reset) Latch – They are also known as preset and clear states. The SR latch forms the basic building blocks of all other types of flip-flops.

SR LATCH WITH NOR GATE


SR Latch is a circuit with:

- √ (i) 2 cross-coupled NOR gate or 2 cross-coupled NAND gate.
- ✓ (ii) 2 input S for SET and R for RESET.
- ✓ (iii) 2 output Q, Q'.

SR LATCH WITH NOR GATE

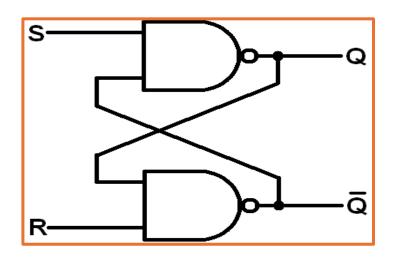
When S=0, R=1
$$\rightarrow$$
 Q = 0 and Q' = 1

When
$$S=0$$
, $R=0 \rightarrow Q=0$ and $Q'=1$ (Memory)

When S=1, R=0
$$\rightarrow$$
 Q = 1 and Q' = 0

When
$$S=0$$
, $R=0 \rightarrow Q=1$ and $Q'=0$ (Memory)

When S=1, R=1
$$\rightarrow$$
 Q = 0 and Q' = 0(Invalid)


SR Latch Truth Table

Inputs		Outputs	
S	R	Q	$\bar{\varrho}$
0	0	unchanged	
0	1	0	1
1	0	1	0
1	1	unstable	

SR LATCH WITH NAND GATE

When S=0, R=1
$$\rightarrow$$
 Q = 1 and Q' = 0

When S=1, R=1
$$\rightarrow$$
 Q = 1 and Q' = 0 (Memory)

When S=1, R=0
$$\rightarrow$$
 Q = 0 and Q' = 1

When S=1, R=1
$$\rightarrow$$
 Q = 0 and Q' = 1(Memory)

When
$$S=0$$
, $R=0 \rightarrow Q=1$ and $Q'=1$ (Invalid)

SR Latch Truth Table

Inputs		Outputs	
S	R	Q	\overline{Q}
0	0	unstable	
0	1	1	0
1	0	0	1
1	1	unchanged	

Assessment

1. What is the purpose of a Set-Reset (SR) latch in digital electronics?

2. In an SR latch, what is the state when both the Set (S) and Reset (R) inputs are asserted simultaneously?

