

SNS COLLEGE OF ENGINEERING

Kurumbapalayam (PO), Coimbatore – 641 107

An Autonomous Institution

Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

SYNCHRONOUS UP DOWN COUNTERS

Dr.G.Arthy
Assistant Professor
Department of EEE
SNS College of Engineering

SYNCHRONOUS UP DOWN COUNTERS

- ✓ A counter is a device which can count any particular event on the basis of how many times the particular event(s) is occurred.
- ✓ Counters are implemented using Flipflops.
- ✓ In synchronous counter, the clock input across all the flip-flops use the same source and create the same clock signal at the same time. So, a counter which is using the same clock signal from the same source at the same time is called Synchronous counter.

SYNCHRONOUS UP DOWN COUNTERS

APPLICATIONS

- ✓ Microprocessors
- ✓ Timers
- ✓ Digital clock or pulse generators.
- ✓ Frequency dividers

DESIGN PROCEDURE

- ✓ **Step 1:** Select the required number of flipflops and the type of flipflops.
- ✓ **Step 2:** Draw the excitation table for the Flipflop.
- ✓ **Step 3:** Draw the state diagram.
- ✓ Step 4: Draw the excitation table for the logic diagram.
- ✓ **Step 5:** Draw K Map to find the minimal Boolean expression.
- ✓ **Step 6:** Draw the logic diagram for the up Down counter.

Problem Statement

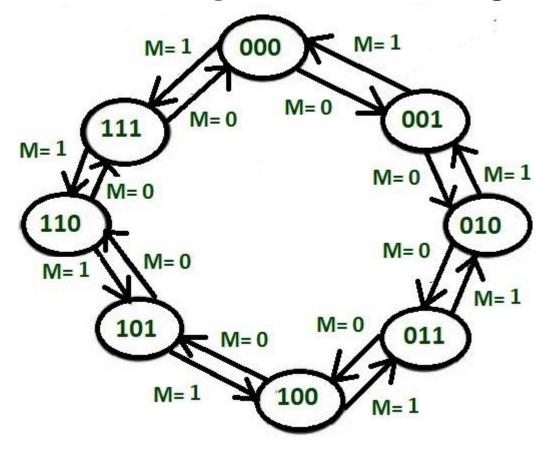
Design a Synchronous 3 bit Up Down Counter

Step 1 :Select the required number of flipflops and size the type of flipflops.

• To perform 3 bit Up Down counting, 3 Flip Flops are required, which can count up to $2^3-1=7$.

• Here T Flip Flop is used.

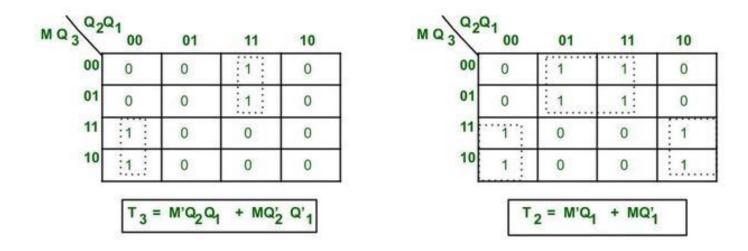
Step 2: Draw the excitation table for the Flipflop.

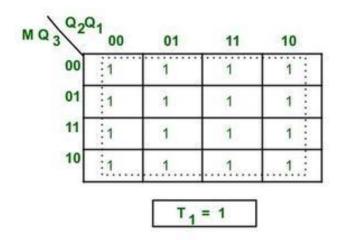


Previous state(Q _n)	Next state(Q n+1)	T		
0	0			
0	1	1		
1	0	1		
1	1	0		

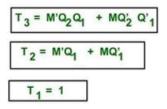
Step 3: Draw the state diagram

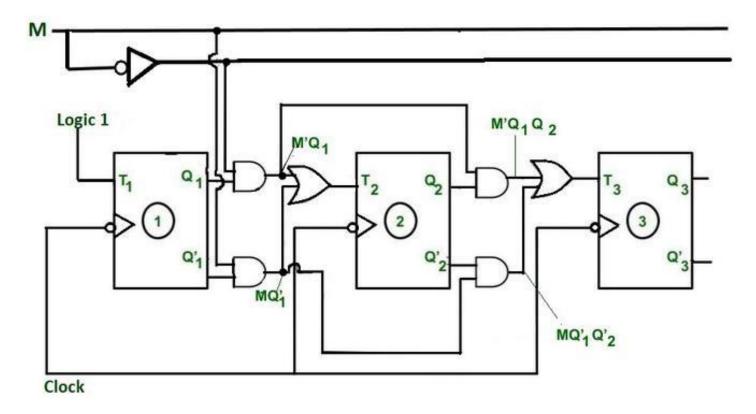
Mode control input M


When M=0, then the counter will perform up counting. When M=1, then the counter will perform down counting.



Step 4: Draw the excitation table for the logic diagram


M	Q ₃	Q2	Q ₁	Q*3	Q*2	Q ₁ *	Т3	T ₂	Т1
0	0	0	0	0	0	1	0	0	1
0	0	0	1	0	1	0	0	1	1
0	0	1	0	0	1	1	0	0	1
0	0	1	1	1	0	0	1	1	1
0	1	0	0	1	0	1	0	0	1
0	1	0	1	1	1	0	0	1	1
0	1	1	0	1	1	1	0	0	1
0	1	1	1	0	0	0	1	1	1
1	0	0	0	1	1	1	1	1	1
1	0	0	1	0	0	0	0	0	1
1	0	1	0	0	0	1	0	1	1
1	0	1	1	0	1	0	0	0	1
1	1	0	0	0	1	1	1	1	1
1	1	0	1	1	0	0	0	0	1
1	1	1	0	1	0	1	0	1	1
1	1	1	1	0	1	0	0	0	1


Step 5: Draw K Map to find the minimal Boolean expression.

Step 6: Draw the logic diagram for the up down counter.

Assessment

1. How many Flipflops are required to design a 4 bit Counter?

2. How many states will be there for a 3 bit counter?

