
1/X

SNS COLLEGE OF ENGINEERING 
Kurumbapalayam (Po), Coimbatore – 641 107

An Autonomous Institution
Accredited by NAAC – UGC with ‘A’ Grade

Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

23CSB101

OBJECT ORIENTED PROGRAMMING

Data Type, Variable, Array

By
M.Kanchana

Assistant Professor/CSE

* ARRAY/ JAVA  /KANCHANA MOORTHY/AP/CSE/SNSCE



ARRAY/ JAVA  /KANCHANA MOORTHY/AP/CSE/SNSCE

Data Types

* 2/13

• Data type is used to allocate sufficient memory space for the data. 

Data types specify the different sizes and values that can be stored 

in the variable.

• Java is a strongly Typed Language.

int x = 10; 

float y = x; // Implicit conversion allowed in C

int x = 10; 

float y = x; // Implicit 

widening conversions in 

java     

float x = 10; 

Int  y = x; // does not 

allow implicit 

narrowing conversions



ARRAY/ JAVA  /KANCHANA MOORTHY/AP/CSE/SNSCE

Type Casting

* 3/13

In Java, type casting is the process of converting a value from one data 

type to another. 

Explicit (Narrowing) Type Casting – Done manually using (type).

float x = 10.5;

int y = (int) x; 

Float value: 10.5 

Converted int value: 10

float x = 10; 

Int  y = x; // does not 

allow implicit 

narrowing conversions



ARRAY/ JAVA  /KANCHANA MOORTHY/AP/CSE/SNSCE

Types of Data types 

* 4/13

• Primitive data types (Intrinsic or built-in types ) 

• Non-primitive data types (Derived or Reference Types)



ARRAY/ JAVA  /KANCHANA MOORTHY/AP/CSE/SNSCE

Primitive data types

* 5/13

• Primitive data types (Intrinsic or built-in types ) 

Primitive data types are those whose variables allow us to store only one value

and never allow storing multiple values of same type. This is a data type whose

variable can hold maximum one value at a time.

Eight primitive types in Java:

Integer Types:

1. int

2. short

3. long

4. byte

Floating-point Types:

5. float

6. double

Others:

7. char

8. Boolean 



ARRAY/ JAVA  /KANCHANA MOORTHY/AP/CSE/SNSCE

Primitive data types

* 6/13

Integer Types:

The integer types are form numbers without fractional parts. 

Negative values are allowed.



ARRAY/ JAVA  /KANCHANA MOORTHY/AP/CSE/SNSCE

Primitive data types

* 7/13

Floating-point Types:

The floating-point types denote numbers with fractional parts



ARRAY/ JAVA  /KANCHANA MOORTHY/AP/CSE/SNSCE

Primitive data types

* 8/13

char:

∙ char data type is a single 16-bit Unicode character.

∙ Minimum value is '\u0000' (or 0).

∙ Maximum value is '\uffff' (or 65,535 inclusive).

∙ Char data type is used to store any character.

∙ Example: char letterA ='A'



ARRAY/ JAVA  /KANCHANA MOORTHY/AP/CSE/SNSCE

Primitive data types

* 9/13

boolean:

• boolean data type represents one bit of information.

• There are only two possible values: true and false.

• This data type is used for simple flags that track true/false 

conditions.

• Default value is false.

• Example: boolean one = true



ARRAY/ JAVA  /KANCHANA MOORTHY/AP/CSE/SNSCE

Non-primitive data types 

(Derived or Reference Types) 

* 10/13

• Derived data types are built using primitive data types

• They provide structured and reusable ways to manage data. 

1. Arrays 

2. Classes 

3. Interfaces

4. Strings

5. Enum

6. Objects



ARRAY/ JAVA  /KANCHANA MOORTHY/AP/CSE/SNSCE

ARRAY

* 11/13

• An array is a collection of elements of the same

data type stored in contiguous memory locations.

• Arrays allow efficient indexing and easy data

manipulation

Int [] numbers = {1, 2, 3, 4, 5};

Or 

Int numbers[]  = {1, 2, 3, 4, 5};

Or

Int [] numbers  = {1, 2, 3, 4, 5};

dataType[] arrayName;

Or 

dataType arrayName[];

Or

dataType []arrayRefVar



ARRAY/ JAVA  /KANCHANA MOORTHY/AP/CSE/SNSCE

Why Use Arrays?

* 12/13

• Efficient storage for multiple values of the same

type.

• Easy access using index positions.

• Reduces code complexity compared to multiple

variables.

Instead of declaring multiple variables:

int num1, num2, num3;

int[] numbers = new int[3];



ARRAY/ JAVA  /KANCHANA MOORTHY/AP/CSE/SNSCE* 13/13



ARRAY/ JAVA  /KANCHANA MOORTHY/AP/CSE/SNSCE

Declaring and Initialization of an Array

* 14/13

• Reduces code complexity compared to multiple

variables.

Instead of declaring multiple variables:

int num1, num2, num3, num4, num5;

int[] numbers = new int[5];  

or            

int[] numbers = {10, 20, 30,40,50};// direct assignment 



ARRAY/ JAVA  /KANCHANA MOORTHY/AP/CSE/SNSCE

Accessing Array Elements

* 15/13

• Access elements using indexing (0-based index).

int[] numbers = {10, 20, 30, 40, 50}; 

System.out.println(numbers[0]); // Output: 10 

System.out.println(numbers[3]); // Output: 40



ARRAY/ JAVA  /KANCHANA MOORTHY/AP/CSE/SNSCE

Modifying Array Elements

* 16/13

int[] numbers = {10, 20, 30,40,50}; 

numbers[1] = 50; // Change value at index 1 

System.out.println(numbers[1]); // Output: 50



ARRAY/ JAVA  /KANCHANA MOORTHY/AP/CSE/SNSCE

Array Length Property

* 17/13

int[] numbers = {10, 20, 30, 40}; 

System.out.println(numbers.length); 

Use .length to get array size. 



ARRAY/ JAVA  /KANCHANA MOORTHY/AP/CSE/SNSCE

Looping Through an Array

* 18/13

int[] numbers = {10, 20, 30, 40}; 

for (int i = 0; i < numbers.length; i++)

{ 

System.out.println(numbers[i]); 

}

Use .length to get array size. 



ARRAY/ JAVA  /KANCHANA MOORTHY/AP/CSE/SNSCE

Multi-Dimensional Arrays

* 19/13

int[][] matrix = new int[3][3];

• Arrays can have multiple dimensions (rows & 

columns).

Declaring a 2D array:

Initializing a 2D array:

int[][] matrix = { {1, 2, 3}, {4, 5, 6}, {7, 8, 9} }; 

System.out.println(matrix[1][2]);

// Output: 6



ARRAY/ JAVA  /KANCHANA MOORTHY/AP/CSE/SNSCE* 20/13



ARRAY/ JAVA  /KANCHANA MOORTHY/AP/CSE/SNSCE

Strings

* 21/13

A sequence of characters, represented as an object of the String 

class.

String str = "Hello, Java!"; 

System.out.println(str.length()); 

Output: 12



ARRAY/ JAVA  /KANCHANA MOORTHY/AP/CSE/SNSCE

enum

* 22/13

An enum (short for enumeration) in Java is a special data type that  

defines a fixed set of constants. It is used when a variable can take one 

of a limited set of predefined values.

Example Use Cases:

•Days of the week (SUNDAY, MONDAY, ...)

•Directions (NORTH, SOUTH, EAST, WEST)

•Traffic light signals (RED, YELLOW, GREEN)

•Order statuses (PENDING, SHIPPED, DELIVERED)

enum Day {SUNDAY, MONDAY, TUESDAY};

Day today = Day.MONDAY;



ARRAY/ JAVA  /KANCHANA MOORTHY/AP/CSE/SNSCE

JAVA Variables 

* 23/13

• A Variable is a named piece of memory that is used for storing data 

in java Program.

• A variable is an identifier used for storing a data value.

• A Variable may take different values at different times during the 

execution if the program, unlike the constants.

Syntax to declare variables:

datatype identifier [=value][,identifier [ =value] …];

int average=0.0, height, total height;



ARRAY/ JAVA  /KANCHANA MOORTHY/AP/CSE/SNSCE

JAVA Variables 

* 24/13

Rules followed for variable names:

1. A variable name must begin with a letter and must be a sequence of letter or 

digits.

2. They must not begin with digits.

3. Uppercase and lowercase variables are not the same.

Example: Total and total are two variables which are distinct.

4. It should not be a keyword.

5. Whitespace is not allowed.

6. Variable names can be of any length.



ARRAY/ JAVA  /KANCHANA MOORTHY/AP/CSE/SNSCE

JAVA Variables 

* 25/13

Two ways to initialize a variable:

1. Initialize after declaration:

Syntax:

int months; 

months=1;

2.Declare and initialize on the same line:

Syntax:

int months=12;



ARRAY/ JAVA  /KANCHANA MOORTHY/AP/CSE/SNSCE

JAVA Variables 

* 26/13

Dynamic Initialization of a Variable:

Java allows variables to be initialized dynamically using any valid expression at the 

time the variable is declared.

Example: Program that computes the remainder of the division operation:

class FindRemainer

{

public static void main(String arg[]) {

int num=10,den=2;

int rem=num%den; 

System.out.println(“Remainder is”+rem);

}

}



ARRAY/ JAVA  /KANCHANA MOORTHY/AP/CSE/SNSCE

JAVA Variables_Types 

* 27/13

Local Variable

•These are variables that are declared inside a method or a block and can 

only be used within that method or block.

•They are created when the method is called and destroyed when the 

method finishes execution.

•Local variables do not have any default value, so they need to be 

explicitly initialized before use.

public void exampleMethod() {

int localVar = 10; // local variable

System.out.println(localVar);

}



ARRAY/ JAVA  /KANCHANA MOORTHY/AP/CSE/SNSCE

JAVA Variables_Types 

* 28/13

Instance Variables:

•These are variables that are declared inside a class but outside any method 

or constructor.

•They are specific to each object (instance) of the class. Each object gets 

its own copy of instance variables.

•Instance variables can have default values (e.g., 0 for integers, null for 

objects) if they are not explicitly initialized.

public class Person {

String name; // instance variable

public void setName(String name) {

this.name = name; // refers to the instance variable

}

}



ARRAY/ JAVA  /KANCHANA MOORTHY/AP/CSE/SNSCE

JAVA Variables_Types 

* 29/13

Class/Static Variables:

•These are variables declared with the static keyword, meaning they 

belong to the class rather than to any particular instance of the class.

•They are initialized once when the class is loaded into memory..

1.The static variable is shared across all objects of the class.

1.The static method can be called directly on the class without creating 

an instance.



ARRAY/ JAVA  /KANCHANA MOORTHY/AP/CSE/SNSCE

JAVA Variables_Types 

* 30/13

public class Counter {

// Static variable (shared among all instances of the 

class)

static int count = 0;

// Method to increment the static variable

public void increment() {

count++;

}

// Static method to access the static variable without 

creating an object

public static void showCount() {

System.out.println("Count: " + count);

}

public static void main(String[] args) {

// Creating instances (objects) of Counter class

Counter c1 = new Counter();

Counter c2 = new Counter();

// Calling the increment method on both objects

c1.increment();

c2.increment();

// Static method can be called using the class name

Counter.showCount();  // Output: Count: 2

}

}



* ARRAY/ JAVA  /KANCHANA MOORTHY/AP/CSE/SNSCE 31/13

THANK YOU


