* Programming interface to the services provided by the OS

* Typically written in a high-level language (C or C++)

* Mostly accessed by programs via a high-level Application Programming

Interface (API) rather than direct system call use

 Three most common APIs are Win32 API for Windows, POSIX API for
POSIX-based systems (including virtually all versions of UNIX, Linux, and
Mac OS X), and Java API for the Java virtual machine (JVM)

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S

27-02-2025

* System call sequence to copy the contents of one file to another file

source file »| destination file

4 Example System Call Sequence)

Acquire input file name
Write prompt to screen
Accept input
Acquire output file name
Write prompt to screen
Accept input
Open the input file
if file doesn't exist, abort
Create output file
if file exists, abort
Loop
Read from input file
Write to output file
Until read fails
Close output file
Write completion message to screen
Terminate normally 4

A

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS 27-02-2025

€2 3088

xample of Standard API

EXAMIPLE OF STANIDARIY API

As an example of a standard API, consider the read() function that is
available in UNIX and Linux systems. The API for this function is obtained
from the man page by invoking the command

man IrIaad

on the command line. A description of this API appears below:

HFinclude ==unistd._.lhi>

ssize & read{(int £f4, woid *buf, size £ count)
| | | | | |
returm furnction pElr‘Ell"ﬂEtET‘E
wvalue narmea

A program that uses the read () function must include the unistd. h header
file, as this file defines the ssize t and si=ze t data tyvpes (among other
things). The parameters passed to read () are as follows:

* dimnt fd—the file descriptor to be read
wold *buf—a buffer where the data will be read into

size t count-—the maximum number of bytes to be read into the

buffer

On a successful read, the number of bytes read is returned. A return value of
0 indicates end of file. If an error occurs, read () returns —1.

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S

27-02-2025

- R i syl .
- g — — —
& =20 = = s -

System Call Implementation

* Typically, a number associated with each system call
» System-call interface maintains a table indexed according to these numbers
* The system call interface invokes the intended system call in OS kernel and
returns status of the system call and any return values
* The caller need know nothing about how the system call is implemented
* Just needs to obey API and understand what OS will do as a result call
* Most details of OS interface hidden from programmer by API

* Managed by run-time support library

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS 27-02-2025

API
OS Relationship

user application

open ()
user
mode
system call interface
kernel
mode A
| open ()
: Implementation
i » of open ()
. system call
return

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S

~System Call- . ™N

27-02-2025

R L~ System Call —
B2 ™ Parameter Passing

* Three general methods used to pass parameters to the OS
» Simplest: pass the parameters in registers

 Parameters stored in a block, or table, in memory, and address of block passed

as a parameter in a register
* This approach taken by Linux and Solaris

* Parameters placed, or pushed, onto the stack by the program and popped off the

stack by the operating system

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS 27-02-2025

—> X

register

X: parameters
for call

— ™ use parameters code for
load address X from table X system
system call 13 — > call 13

user program

operating system

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS 27-02-2025

* Process control
* create process, terminate process
* end, abort, load, execute
* get process attributes, set process attributes
» wait for time , wait event, signal event
* allocate and free memory
* Dump memory if error
* Debugger for determining bugs, single step execution
 Locks for managing access to shared data between processes

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS 27-02-2025

Types of System Calls ’

* File management
* create file, delete file
* open, close file, read, write, reposition

» get and set file attributes

* Device management
* request device, release device
* read, write, reposition
» get device attributes, set device attributes

* logically attach or detach devices

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS 27-02-2025

10

Information maintenance
» gettime or date, set time or date
» get system data, set system data
» getand set process, file, or device attributes

« Communications

create, delete communication connection

send, receive messages if message passing model to host name or process name
Shared-memory model create and gain access to memory regions

transfer status information

attach and detach remote devices
Protection

Control access to resources

Get and set permissions

Allow and deny user access

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS 27-02-2025

Process
Control

File
Manipulation

Device
Manipulation

Information
Maintenance

Communication

Protection

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S

<21 %5 Saaaly

Examples of Windows and

11
Unix System Calls
Windows Unix
CreateProcess () fork()
ExitProcess () exit()
WaitForSingleObject () walt()
CreateFile () open{)
ReadFile () read ()
WriteFile () write()
CloseHandle () close()
SetConsoleMode () ioctl ()
ReadConsole () read ()
WriteConsole() write()
GetCurrentProcessID() getpid ()
SetTimer () alarm()
Sleep () sleep ()
CreatePipe () pipe)
CreateFileMapping() shmget (O
MapViewOfFile () mmap ()
SetFileSecurity () chmod ()
InitlializeSecurityDescriptor() umask ()
SetSecurityDescriptorGroup() chown ()
27-02-2025

andard C Library Example =

* C program invoking printf() library call, which calls write() system call

#include <stdio.h>
int main {)

{

printf ("Greetings”); |=-

return 0;
}
user
mode -
— standard C library
kernel
mode /
\:urite ()
write ()
system call

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS 27-02-2025

Example: MS-DOS .

* Single-tasking

free memory
 Shell invoked when system booted
_ free memory
* Simple method to run program
process
* No process created
. command
¢ Slngle memOI‘y Space interpreter command
interpreter
e Loads program into memory, Gl kemael
o (a) (b)
overwriting all but the kernel _
At system startup running a program

Program exit -> shell reloaded

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS 27-02-2025

* Unix variant , Multitasking
» User login -> invoke user’s choice of shell

 Shell executes fork() system call to create process
* Executes exec() to load program into process
 Shell waits for process to terminate or continues
with user commands
* Process exits with:
* code =0 -no error

e code >0 - error code

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S

Example: FreeBSD

process D

free memory

process C

interpreter

process B

kernel

27-02-2025

TEXT BOOK

1. Abraham Silberschatz, Peter B. Galvin, “Operating System Concepts”, 10t Edition, John Wiley &
Sons, Inc., 2018.

2. Andrew S Tanenbaum, Herbert Bos, Modern Operating Pearson, 2015.

REFERENCES
1. Ramaz Elmasri, A. Gil Carrick, David Levine, “ Operating Systems — A Spiral Approach”, Tata McGraw Hill Edition, 2010.

2. William Stallings, Operating Systems: Internals and Design Principles, 7th Edition, Prentice Hall, 2018
3. Achyut S.Godbole, Atul Kahate, “Operating Systems”, McGraw Hill Education, 2016

THANK YOU

2/27/2025 0S / Dr.B.Anuradha/ CSD/ SNSCE

