

- **Programming interface** to the services provided by the OS
- Typically written in a high-level language (C or C++)
- Mostly accessed by programs via a high-level Application Programming Interface (API) rather than direct system call use
- Three most common APIs are Win32 API for Windows, POSIX API for POSIX-based systems (including virtually all versions of UNIX, Linux, and Mac OS X), and Java API for the Java virtual machine (JVM)

Example of System Calls

• System call sequence to copy the contents of one file to another file

source file	destination fil	le
	Example System Call Sequence Acquire input file name Write prompt to screen Accept input Acquire output file name Write prompt to screen Accept input Open the input file if file doesn't exist, abort Create output file if file exists, abort Loop Read from input file Write to output file Until read fails Close output file Write completion message to screen	
	Terminate normally	

INSTITUTIONS

EXAMPLE OF STANDARD API

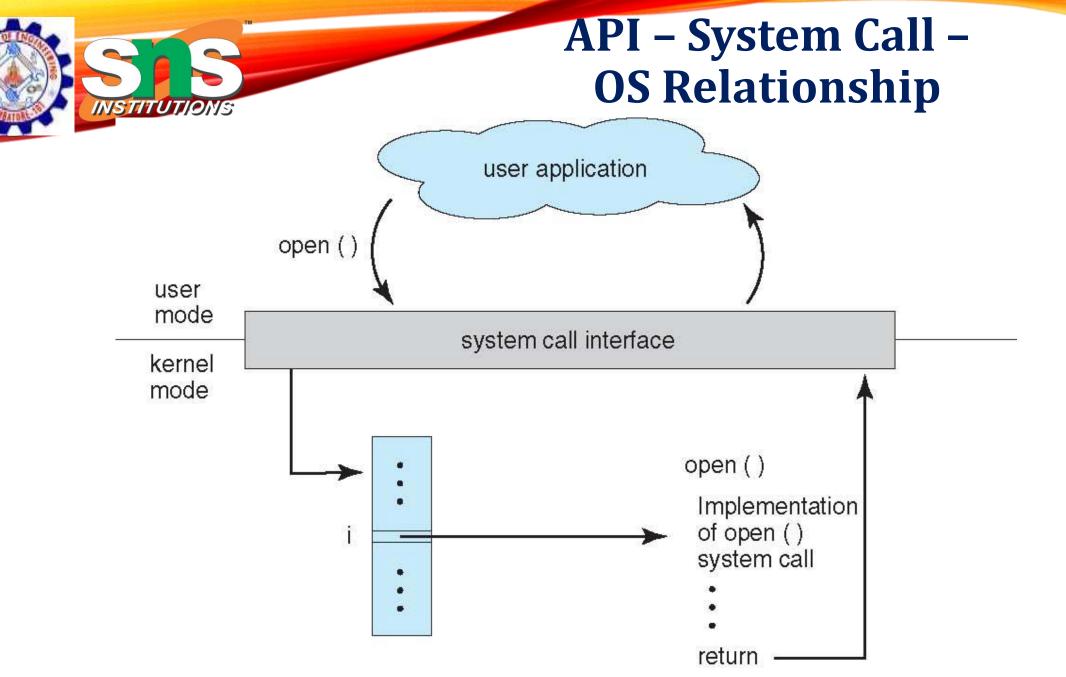
As an example of a standard API, consider the read() function that is available in UNIX and Linux systems. The API for this function is obtained from the man page by invoking the command

man read

on the command line. A description of this API appears below:

	#include	<unistd.h></unistd.h>					
L	ssize_t	read(int	fd,	void	*buf,	size_t	count)
	return value	function name		p	aramete	ers	

A program that uses the read() function must include the unistd.h header file, as this file defines the ssize_t and size_t data types (among other things). The parameters passed to read() are as follows:

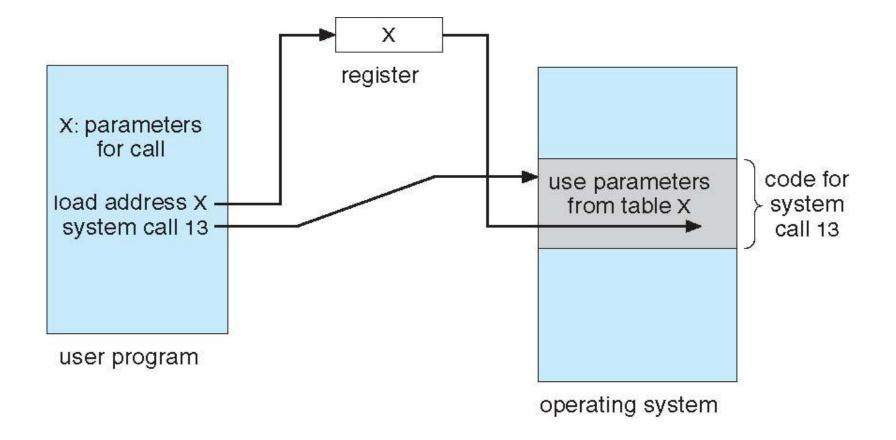

- int fd—the file descriptor to be read
- void *buf a buffer where the data will be read into
- size_t count—the maximum number of bytes to be read into the buffer

On a successful read, the number of bytes read is returned. A return value of 0 indicates end of file. If an error occurs, read() returns -1.

System Call Implementation

- Typically, a number associated with each system call
 - **System-call interface** maintains a table indexed according to these numbers
- The system call interface invokes the intended system call in OS kernel and returns status of the system call and any return values
- The caller need know nothing about how the system call is implemented
 - Just needs to obey API and understand what OS will do as a result call
 - Most details of OS interface hidden from programmer by API
 - Managed by run-time support library

System Call Parameter Passing


- Three general methods used to pass parameters to the OS
 - **Simplest:** pass the parameters in registers
 - Parameters stored in a block, or table, in memory, and address of block passed

as a parameter in a register

- This approach taken by Linux and Solaris
- Parameters placed, or pushed, onto the stack by the program and popped off the stack by the operating system

Parameter Passing via Table

• Process control

- create process, terminate process
- end, abort , load, execute
- get process attributes, set process attributes
- wait for time , wait event, signal event
- allocate and free memory
- Dump memory if error
- **Debugger** for determining **bugs**, **single step** execution
- Locks for managing access to shared data between processes

Types of System Calls

Types of System Calls

- File management
 - create file, delete file
 - open, close file , read, write, reposition
 - get and set file attributes
- Device management
 - request device, release device
 - read, write, reposition
 - get device attributes, set device attributes
 - logically attach or detach devices

STITUTIONS

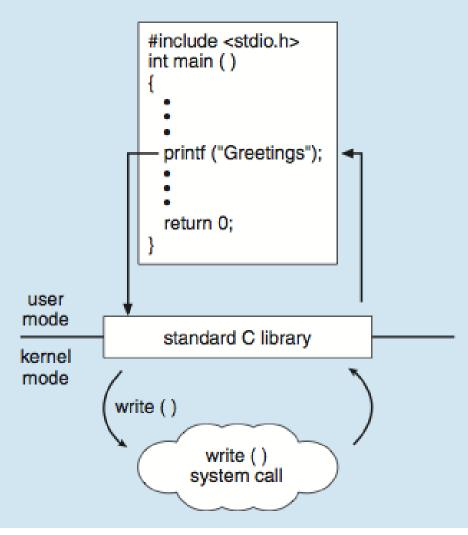
Types of System Calls (Cont.)

Information maintenance

- get time or date, set time or date
- get system data, set system data
- get and set process, file, or device attributes
- Communications
 - create, delete communication connection
 - send, receive messages if message passing model to host name or process name
 - Shared-memory model create and gain access to memory regions
 - transfer status information
 - attach and detach remote devices

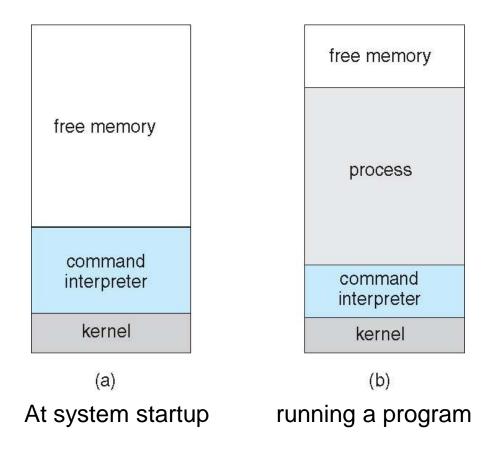
Protection

Control access to resources Get and set permissions Allow and deny user access


Examples of Windows and Unix System Calls

INSTITUTIONS					
		Windows	Unix		
	Process Control	CreateProcess() ExitProcess() WaitForSingleObject()	fork() exit() wait()		
	File Manipulation	CreateFile() ReadFile() WriteFile() CloseHandle()	open() read() write() close()		
	Device Manipulation	SetConsoleMode() ReadConsole() WriteConsole()	ioctl() read() write()		
	Information Maintenance	GetCurrentProcessID() SetTimer() Sleep()	getpid() alarm() sleep()		
	Communication	CreatePipe() CreateFileMapping() MapViewOfFile()	<pre>pipe() shmget() mmap()</pre>		
	Protection	SetFileSecurity() InitlializeSecurityDescriptor() SetSecurityDescriptorGroup()	chmod() umask() chown()		

Standard C Library Example


• C program invoking printf() library call, which calls write() system call

Example: MS-DOS

- Single-tasking
- Shell invoked when system booted
- Simple method to run program
 - No process created
- Single memory space
- Loads program into memory, overwriting all but the kernel
- Program exit -> shell reloaded

Example: FreeBSD

Unix variant , Multitasking

INSTITUTION

- User login -> invoke user's choice of shell
- Shell executes **fork()** system call to create process
 - Executes **exec()** to load program into process
 - Shell waits for process to terminate or continues with user commands
- Process exits with:
 - code = 0 no error
 - code > 0 error code

process D
free memory
process C
interpreter
process B
kernel

TEXT BOOK

1. Abraham Silberschatz, Peter B. Galvin, "Operating System Concepts", 10th Edition, John Wiley & Sons, Inc., 2018.

2. Andrew S Tanenbaum, Herbert Bos, Modern Operating Pearson, 2015.

REFERENCES

- 1. Ramaz Elmasri, A. Gil Carrick, David Levine, "Operating Systems A Spiral Approach", Tata McGraw Hill Edition, 2010.
- 2. William Stallings, Operating Systems: Internals and Design Principles, 7th Edition, Prentice Hall, 2018
- 3. Achyut S.Godbole, Atul Kahate, "Operating Systems", McGraw Hill Education, 2016

THANK YOU