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System Calls

• Programming interface to the services provided by the OS

• Typically written in a high-level language (C or C++)

• Mostly accessed by programs via a high-level Application Programming 

Interface (API) rather than direct system call use

• Three most common APIs are Win32 API for Windows, POSIX API for 

POSIX-based systems (including virtually all versions of UNIX, Linux, and 

Mac OS X), and Java API for the Java virtual machine (JVM)
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Example of System Calls

• System call sequence to copy the contents of one file to another file
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Example of Standard API
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System Call Implementation

• Typically, a number associated with each system call

• System-call interface maintains a table indexed according to these numbers

• The system call interface invokes  the intended system call in OS kernel and 

returns status of the system call and any return values

• The caller need know nothing about how the system call is implemented

• Just needs to obey API and understand what OS will do as a result call

• Most details of  OS interface hidden from programmer by API  

• Managed by run-time support library
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API – System Call –
OS Relationship
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System Call 
Parameter Passing

• Three general methods used to pass parameters to the OS

• Simplest:  pass the parameters in registers

• Parameters stored in a block, or table, in memory, and address of block passed 

as a parameter in a register 

• This approach taken by Linux and Solaris

• Parameters placed, or pushed, onto the stack by the program and popped off the 

stack by the operating system
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Parameter Passing via Table
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Types of System Calls

• Process control

• create process, terminate process

• end, abort , load, execute

• get process attributes, set process attributes

• wait for time , wait event, signal event

• allocate and free memory

• Dump memory if error

• Debugger for determining bugs, single step execution

• Locks for managing access to shared data between processes
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Types of System Calls

• File management

• create file, delete file

• open, close file , read, write, reposition

• get and set file attributes

• Device management

• request device, release device

• read, write, reposition

• get device attributes, set device attributes

• logically attach or detach devices
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Types of System Calls (Cont.)

• Information maintenance

• get time or date, set time or date

• get system data, set system data

• get and set process, file, or device attributes

• Communications

• create, delete communication connection

• send, receive messages if message passing model to host name or process name

• Shared-memory model create and gain access to memory regions

• transfer status information

• attach and detach remote devices
Protection

Control access to resources
Get and set permissions
Allow and deny user access
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Examples of Windows and  
Unix System Calls
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Standard C Library Example

• C program invoking printf() library call, which calls write() system call
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Example: MS-DOS

• Single-tasking

• Shell invoked when system booted

• Simple method to run program

• No process created

• Single memory space

• Loads program into memory, 

overwriting all but the kernel

• Program exit -> shell reloaded

At system startup          running a program
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Example: FreeBSD

• Unix variant , Multitasking

• User login -> invoke user’s choice of shell

• Shell executes fork( ) system call to create process

• Executes exec( ) to load program into process

• Shell waits for process to terminate or continues 

with user commands

• Process exits with:

• code = 0 – no error 

• code > 0 – error code
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