
1

27-02-2025Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

System Calls

• Programming interface to the services provided by the OS

• Typically written in a high-level language (C or C++)

• Mostly accessed by programs via a high-level Application Programming

Interface (API) rather than direct system call use

• Three most common APIs are Win32 API for Windows, POSIX API for

POSIX-based systems (including virtually all versions of UNIX, Linux, and

Mac OS X), and Java API for the Java virtual machine (JVM)

2

27-02-2025Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Example of System Calls

• System call sequence to copy the contents of one file to another file

3

27-02-2025Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Example of Standard API

4

27-02-2025Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

System Call Implementation

• Typically, a number associated with each system call

• System-call interface maintains a table indexed according to these numbers

• The system call interface invokes the intended system call in OS kernel and

returns status of the system call and any return values

• The caller need know nothing about how the system call is implemented

• Just needs to obey API and understand what OS will do as a result call

• Most details of OS interface hidden from programmer by API

• Managed by run-time support library

5

27-02-2025Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

API – System Call –
OS Relationship

6

27-02-2025Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

System Call
Parameter Passing

• Three general methods used to pass parameters to the OS

• Simplest: pass the parameters in registers

• Parameters stored in a block, or table, in memory, and address of block passed

as a parameter in a register

• This approach taken by Linux and Solaris

• Parameters placed, or pushed, onto the stack by the program and popped off the

stack by the operating system

7

27-02-2025Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Parameter Passing via Table

8

27-02-2025Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Types of System Calls

• Process control

• create process, terminate process

• end, abort , load, execute

• get process attributes, set process attributes

• wait for time , wait event, signal event

• allocate and free memory

• Dump memory if error

• Debugger for determining bugs, single step execution

• Locks for managing access to shared data between processes

9

27-02-2025Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Types of System Calls

• File management

• create file, delete file

• open, close file , read, write, reposition

• get and set file attributes

• Device management

• request device, release device

• read, write, reposition

• get device attributes, set device attributes

• logically attach or detach devices

10

27-02-2025Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Types of System Calls (Cont.)

• Information maintenance

• get time or date, set time or date

• get system data, set system data

• get and set process, file, or device attributes

• Communications

• create, delete communication connection

• send, receive messages if message passing model to host name or process name

• Shared-memory model create and gain access to memory regions

• transfer status information

• attach and detach remote devices
Protection

Control access to resources
Get and set permissions
Allow and deny user access

11

27-02-2025Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Examples of Windows and
Unix System Calls

12

27-02-2025Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Standard C Library Example

• C program invoking printf() library call, which calls write() system call

13

27-02-2025Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Example: MS-DOS

• Single-tasking

• Shell invoked when system booted

• Simple method to run program

• No process created

• Single memory space

• Loads program into memory,

overwriting all but the kernel

• Program exit -> shell reloaded

At system startup running a program

14

27-02-2025Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Example: FreeBSD

• Unix variant , Multitasking

• User login -> invoke user’s choice of shell

• Shell executes fork() system call to create process

• Executes exec() to load program into process

• Shell waits for process to terminate or continues

with user commands

• Process exits with:

• code = 0 – no error

• code > 0 – error code

2/27/2025

TEXT BOOK
1. Abraham Silberschatz, Peter B. Galvin, “Operating System Concepts”, 10th Edition, John Wiley &

Sons, Inc., 2018.

2. Andrew S Tanenbaum, Herbert Bos, Modern Operating Pearson , 2015.

1. Ramaz Elmasri, A. Gil Carrick, David Levine, “ Operating Systems – A Spiral Approach”, Tata McGraw Hill Edition, 2010.

2. William Stallings, Operating Systems: Internals and Design Principles, 7th Edition, Prentice Hall, 2018

3. Achyut S.Godbole, Atul Kahate, “Operating Systems”, McGraw Hill Education, 2016

THANK YOU

OS / Dr.B.Anuradha/ CSD/ SNSCE

REFERENCES

