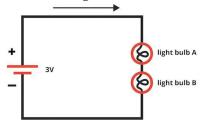


ELECTROMAGNETIC FIELDS AND WAVES

ELECTROMAGNETIC FIELDS AND WAVES/23ECT202/ Dr. A. Vaniprabha /Introduction

What is field ?

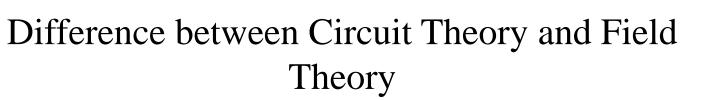
- Field is a function that specifies a particular quantity everywhere in a region.
- ELECTROMAGNETIC FIELD is produced by interaction of time varying electric and magnetic field.
- Voltage produces electric field.



• Time varying electric field produces magnetic field

What is field ?

- Magnetic field may be stationary or time varying it depends on time varying current.
- When the current is varying with respect to time then the magnetic field will also vary with respect to time.
- Time varying magnetic field produces electric field.
- Ex- transformer (flux varying with respect to time produces emf)



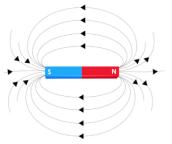
Circuit Theory	Field Theory
Deals with Voltage and	Deals with the Electric field
Current	and magnetic field
V & I are scalar	E and H are Vector quantity
Radiation and effect are	Radiation effect is
neglected	considered
Its useful only in low	Independent of frequency
frequency	

Static electric field

 Constant fields, which do not change in intensity or direction over time, in contrast to low and high frequency alternating fields.

Static Magnetic field:

- A static magnetic field is created by a magnet or charges that move as a steady flow (as in appliances using direct current).
- Also called magnetostatics.



Static electric field

Electromagnetic field, a property of space caused by

the motion of an electric charge.

- A stationary charge will produce only an electric field in the surrounding space.
- If the charge is moving, a magnetic field is also produced.
- An electric field can be produced also by a changing magnetic field.
- The mutual interaction of electric and magnetic fields produces an electromagnetic field.

ELECTROMAGNETIC FIELDS AND WAVES/23ECT202/ Dr. A. Vaniprabha /Introduction

APPLICATIONS

- Microwave
- Analysis of Antennas
- Electric machine, transformers
- Analysis of power system
- Electromechanical Energy Conversion
- Wireless communication Engineering
- Optical fiber

Scalar Quantity

- Physical quantity with magnitude and no direction.
- Some physical quantities can be described just by their numerical value (with their respective units) without directions (they don't have any direction).
- Examples of Scalar Quantities

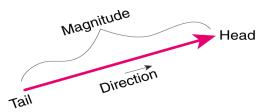
Mass	Speed	
Distance	Time	
Area	Volume	
Density	Temperature	

ELECTROMAGNETIC FIELDS AND WAVES/23ECT202/ Dr. A. Vaniprabha /Vector Calculus

Vector Analysis

- Physical quantities which can be represented magnitude and Direction both.
 - Zero Vector
 - Position Vector
 - Like and Unlike Vectors
 - Collinear Vector
 - Displacement Vector

- -Unit Vector
- -Co-initial Vector
- -Co-planar Vector
- -Equal Vector
- -Negative of a Vector



ELECTROMAGNETIC FIELDS AND WAVES/23ECT202/ Dr. A. Vaniprabha /Vector Calculus

Examples of Vector Quantities

Linear momentum

Displacement

Angular velocity

Electric field

Acceleration

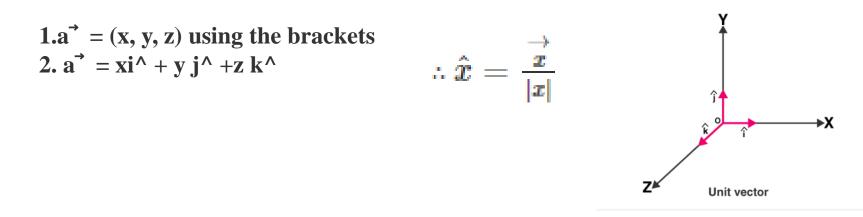
Momentum

Force

Polarization

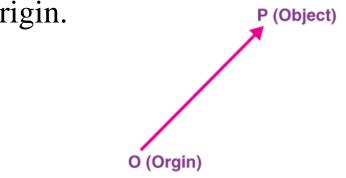
Unit vector

- A vector which has a magnitude of unit length is called a unit vector.
- Suppose if \vec{x} is a vector having a magnitude x then the unit vector is denoted by \mathbf{x} in the direction of the vector \vec{x} and has the magnitude equal to 1.
- Its used to indicate the direction of vector quantity.



Position Vector

- If O is taken as reference origin and P is an arbitrary point in space then the vector \overrightarrow{OP} is called as the position vector of the point.
- Position vector simply denotes the position or location of a point in the three-dimensional Cartesian system with respect to a reference origin. P(Object)



Properties of Vectors

- If A, B, C are vectors and m, n are scalars then (1) Addition
- A + B = B + ACommutative lawA + (B + C) = (A + B) + CAssociative law

(2) Subtraction

A - B = A + (- B)

Properties of Vectors

(3) Multiplication by a scalar		
m A = A m	Commutative law	
m(n A) = n(m A)	Associative law	
(m+n) A = m A + n A	Distributive law	
m (A + B) = m A + m B	Distributive law	
A Position vector' is represented graphically by a directed		
line segment.		
A Unit vector' is a vector of unit magnitude and directed		
along that vector'.		
a [^] A is a Unit vector along the direction of A.		

ELECTROMAGNETIC FIELDS AND WAVES/23ECT202/ Dr. A. Vaniprabha /Vector Calculus

Thus, the graphical representation of A and a^ A are

Vector A

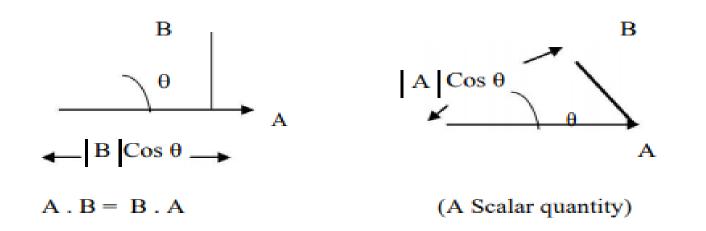
Unit vector a A

Also
$$\hat{a}_A = A / A$$
 or $A = \hat{a}_A A$

Product of two or more vectors :

(1) Dot Product (.)

A.B = A (B COS θ OR { A COS θ } B, $0 \le \theta \le \pi$



(2) CROSS PRODUCT (X)

 $A \times B = -B \times A$ $A \times (B + C) = A \times B + A \times C$

Coordinate system

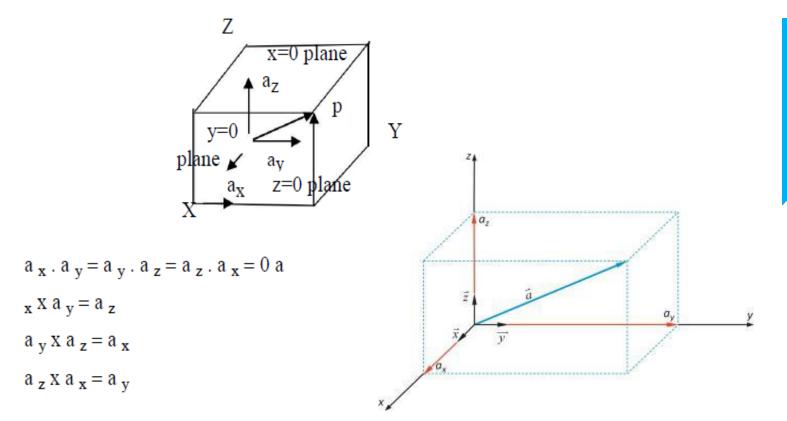
- For an explicit representation of a vector quantity,
 - a _co-ordinate system' is essential.

Different systems used :

Sl.No.	System	Co-ordinate variables	Unit vectors
1.	Rectangular	x, y, z	a_x, a_y, a_z
2.	Cylindrical	ρ, φ, z	a_0, a_{ϕ}, a_Z
3.	Spherical	r, θ, φ	$a_r, a_{\theta}, a_{\phi}$

These are _ORTHOGONAL_ i.e., unit vectors in such system of co-ordinates are mutually perpendicular in the right circular way.

RECTANGULAR CO-ORDINATE SYSTEM :



 a_z is in direction of _advance' of a right circular screw as is turned from a_x to a_y Co-ordinate variable _x' is intersection of planes OYX and OXZ .e, z = 0 & y = 0

Location of point P :

If the point P is at a distance of r from O, then

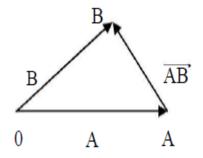
If the components of r along X, Y, Z are x, y, z then

$$\mathbf{r} = \mathbf{x} \mathbf{a}_{\mathbf{x}} + \mathbf{y} \mathbf{a}_{\mathbf{y}} + \mathbf{z} \mathbf{a}_{\mathbf{z}} = |\mathbf{r}| \mathbf{a}_{\mathbf{r}}$$

Equation of Vector AB :

If
$$\overrightarrow{OA} = A = A_x a_x + A_y a_y + A_z a_z$$

and $\overrightarrow{OB} = B = B_x a_x + B_y a_y + B_z a_z$ then
 $\overrightarrow{A} + \overrightarrow{AB} = B$ or $\overrightarrow{AB} = B - A$



where A_s , $A_y \& A_z$ are components of A along X, Y and Z and B_s , $B_y \& B_z$ are components of B along X, Y and Z

Dot and Cross Products :

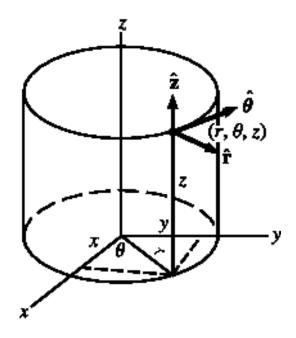
Taking 'Cross products' term by term and grouping, we get

 $A \times B = \begin{vmatrix} a_x & a_y & a_z \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix}$ $A \cdot (B \times C) = \begin{vmatrix} A_x & A_y & A_z \\ B & B & B \\ x & y & z \\ C & C & C \end{vmatrix}$

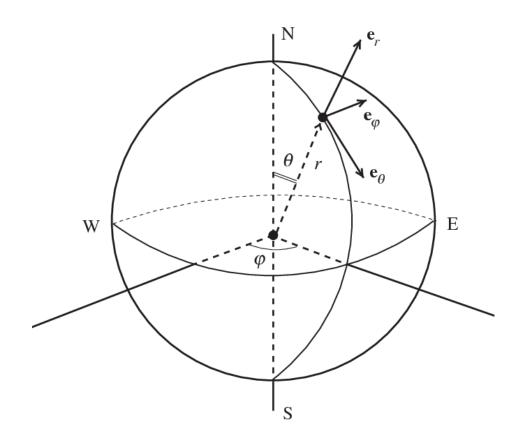
If A, B and C are non zero vectors,

(i) A . B = 0 then $\cos \theta = 0$.e., $\theta = 90^{0}$ A and B are perpendicular

CYLINDRICAL COORDINATE SYSTEM



SPHERICAL COORDINATE SYSTEM



$$\nabla V = \frac{\partial V}{\partial x} \mathbf{a}_x + \frac{\partial V}{\partial y} \mathbf{a}_y + \frac{\partial V}{\partial z} \mathbf{a}_z \qquad \text{(cartesian)}$$

$$\nabla V = \frac{\partial V}{\partial \rho} \mathbf{a}_\rho + \frac{1}{\rho} \frac{\partial V}{\partial \phi} \mathbf{a}_\phi + \frac{\partial V}{\partial z} \mathbf{a}_z \qquad \text{(cylindrical)}$$

$$\nabla V = \frac{\partial V}{\partial r} \mathbf{a}_r + \frac{1}{r} \frac{\partial V}{\partial \theta} \mathbf{a}_\theta + \frac{1}{r \sin \theta} \frac{\partial V}{\partial \phi} \mathbf{a}_\phi \qquad \text{(spherical)}$$

$$V(\mathbf{r}) = \frac{1}{4\pi\varepsilon_{o}} \int_{L} \frac{\rho_{L}(\mathbf{r}')dl'}{|\mathbf{r} - \mathbf{r}'|} \qquad \text{(line charge)}$$
$$V(\mathbf{r}) = \frac{1}{4\pi\varepsilon_{o}} \int_{S} \frac{\rho_{S}(\mathbf{r}')dS'}{|\mathbf{r} - \mathbf{r}'|} \qquad \text{(surface charge)}$$
$$V(\mathbf{r}) = \frac{1}{4\pi\varepsilon_{o}} \int_{V} \frac{\rho_{V}(\mathbf{r}')dV'}{|\mathbf{r} - \mathbf{r}'|} \qquad \text{(volume charge)}$$

