



# ELECTROMAGNETIC FIELDS AND WAVES





# 1. Coulomb's Law

Coulomb's Law states that the force between two stationary point charges is:

$$F=rac{1}{4\piarepsilon_0}rac{q_1q_2}{r^2}$$

# **Key Points:**

- $F \rightarrow$  Force between two charges (N)
- q<sub>1</sub>, q<sub>2</sub> → Magnitude of the charges (C)
- r → Distance between the charges (m)
- $\varepsilon_0$   $\rightarrow$  Permittivity of free space  $8.854 \times 10^{-12}$  F/m
- The force is attractive for opposite charges and repulsive for like charges.





### **Vector Form of Coulomb's Law**

$$\mathbf{F}=rac{1}{4\piarepsilon_0}rac{q_1q_2}{r^2}\hat{r}$$

where  $\hat{r}$  is the unit vector along the line joining the charges.





# 2. Electric Field Intensity (E)

Electric field intensity at a point is the force per unit charge experienced by a small positive test charge placed at that point.

$$E=rac{F}{q}$$

### **Electric Field Due to a Point Charge**

$$E=rac{1}{4\piarepsilon_0}rac{q}{r^2}$$

## **Superposition Principle**

For multiple charges, the total electric field is the vector sum:

$$\mathbf{E} = \sum \mathbf{E_i}$$

where each  $\mathbf{E_i}$  is the electric field due to individual charges.





# 3. Electric Flux Density (D)

Electric flux density (D) relates to the electric field and is given by:

$$D = \varepsilon E$$

### where

- D → Electric flux density (C/m²)
- *E* → Electric field intensity (V/m)
- $\varepsilon \rightarrow$  Permittivity of the medium





# 3. Electric Flux Density (D)

Electric flux density (D) relates to the electric field and is given by:

$$D = \varepsilon E$$

where

- D → Electric flux density (C/m²)
- *E* → Electric field intensity (V/m)
- ε → Permittivity of the medium

### Gauss's Law in Terms of D

Gauss's Law states that the total electric flux through a closed surface is equal to the charge enclosed:

$$\oint \mathbf{D} \cdot d\mathbf{A} = Q_{\text{enclosed}}$$

where dA is the differential surface element.





# 4. Comparison of ${\cal E}$ and ${\cal D}$

| Property          | Electric Field Intensity (E) | Electric Flux Density (D)  |
|-------------------|------------------------------|----------------------------|
| Definition        | Force per unit charge        | Charge per unit area       |
| Unit              | V/m                          | C/m²                       |
| Medium Dependency | Depends on $arepsilon$       | Independent of $arepsilon$ |
| Relationship      | E=D/arepsilon                | D=arepsilon E              |

Coulomb's Law: Used to calculate forces in electrostatic fields.

**Electric Field** (E): Determines how charges interact in free space and materials.

Flux Density (D): Essential in Gauss's Law and capacitor design.





# Thank you

