
SNS COLLEGE OF ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE
AND ENGINEERING

Javascript OBJECTS

JAVASCRIPT OBJECTS

• In JavaScript, an object is a collection of
properties, where each property is defined as a
key-value pair. Objects allow us to store,
organize, and manipulate data efficiently.

•Objects can contain values, including numbers,
strings, arrays, functions, and even other
objects.

OBJECT PROPERTIES

•A real life car has properties like weight and color:
• car.name = Fiat, car.model = 500, car.weight = 850kg,

car.color = white.
•Car objects have the same properties, but

the values differ from car to car.
•Objects are variables too. But objects can contain

many values.
• const car = {type:"Fiat", model:"500", color:"white"};

OBJECT METHODS

•It is a common practice to declare objects
with the const keyword.
•A real life car has methods like start and
stop:
•car.start(), car.drive(), car.brake(), car.stop().
•Car objects have the same methods, but the
methods are performed at different times.

Using Object Literal

•The easiest way to create an object is by

using curly braces {} and defining properties inside.
javascript

let person = { name: "Alice", age: 25, c

ountry: "India" }; console.log(person.name);

// Output: Alice

Using the new Object() Constructor

•
let student = new Object();
student.name = "Bob";
student.age = 22;
console.log(student.name);

Using the new Object() Constructor

•
let student = new Object();
student.name = "Bob";
student.age = 22;
console.log(student.name);

Using the new Object() Constructor

• Create an Object
const person = {};

// Add Properties
person.firstName = "John";
person.lastName = "Doe";
person.age = 50;
person.eyeColor = "blue";

Using the new Object() Constructor

•

<p id="demo"></p>
<script>
// Create an empty Object
const person = {};
// Add Properties
person.firstName = "John";
person.lastName = "Doe";
person.age = 50;
person.eyeColor = "blue";
// Display Data from Object
document.getElementById("demo").innerHTML =
person.firstName + " is " + person.age + " years old.";
</script>

SNS COLLEGE OF ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE
AND ENGINEERING

JAVASCRIPT DEBUGGERS

DEBUGGERS

Debugging is an essential part of JavaScript
development to find and fix errors in the code. A
debugger is a tool that helps developers inspect
and troubleshoot JavaScript code by pausing
execution, stepping through the code, and
checking variable values.

Common Debugging Techniques in JavaScript

Using console.log()
•The simplest way to debug is by printing values to the console.
javascript
let num = 10; console.log("The value of num is:", num);
•However, console.log() becomes inefficient for large applications

Using the debugger Keyword

The debugger keyword stops JavaScript execution
at a specific point, allowing developers to inspect variables.
let x = 5;let y = 10;debugger;
// Execution pauses here if DevTools is openlet
sum = x + y;console.log(sum);The debugger works
only if Developer Tools (DevTools) is open in the browser.

Using the debugger Keyword

SNS COLLEGE OF ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE
AND ENGINEERING

JavaScript FUNCTIONS

JAVA SCRIPT FUNCTIONS

• Functions in JavaScript are reusable blocks of code designed
to perform specific tasks.

• They allow you to organize, reuse, and modularize code.

• It can take inputs, perform actions, and return outputs.

Function Syntax and
Working

• Below are the rules for creating a function in JavaScript:

• Begin with the keyword function followed by,

• A user-defined function name (In the above example, the name
is sum)

• A list of parameters enclosed within parentheses and separated by
commas (In the above example, parameters are x and y)

• A list of statements composing the body of the function enclosed
within curly braces {} (In the above example, the statement is “return
x + y”).

FUNCTIONS

• Parameters are input passed to a function. In the above
example, sum() takes two parameters, x and y.

• Calling Functions

• After defining a function, the next step is to call them to
make use of the function. We can call a function by using the
function name separated by the value of parameters enclosed
between the parenthesis.

FUNCTIONS
// Function Definition
function welcomeMsg(name) {

return ("Hello " + name + " welcome to GeeksforGeeks");
}

let nameVal = "User";

// calling the function
console.log(welcomeMsg(nameVal));

WHY FUNCTIONS
Why Functions?

• Functions can be used multiple times, reducing redundancy.

• Break down complex problems into manageable pieces.

• Manage complexity by hiding implementation details.

• Can call themselves to solve problems recursively.

Function Expression
It is similar to a function declaration without the function name. Function
expressions can be stored in a variable assignment.

Syntax:

let geeksforGeeks= function(paramA, paramB) {

// Set of statements

}

const mul = function (x, y) {

return x * y;

};

console.log(mul(4, 5));

ARROW FUNCTIONS
• Arrow functions are a concise syntax for writing functions.

Syntax:

let function_name = (argument1, argument2 ,..) => expression

const a = ["Hydrogen", "Helium", "Lithium", "Beryllium"];

const a2 = a.map(function (s) {

return s.length;

});

https://www.geeksforgeeks.org/arrow-functions-in-javascript/

ARROW FUNCTIONS

console.log("Normal way ", a2);

const a3 = a.map((s) => s.length);

console.log("Using Arrow Function ",
a3);

Callback Functions

A callback function is passed as an argument to
another function and is executed after the
completion of that function.
function num(n, callback) {

return callback(n);
}
const double = (n) => n * 2;
console.log(num(5, double));

Anonymous Functions

Anonymous functions are functions without a name. They are often
used as arguments to other functions

setTimeout(function () {

console.log("Anonymous function executed!");

}, 1000);

https://www.geeksforgeeks.org/javascript-anonymous-functions/

Nested Functions

Functions defined within other functions are called nested functions. They have
access to the variables of their parent function.

function outerFun(a) {

function innerFun(b) {

return a + b;

}

return innerFun;

}

const addTen = outerFun(10);

console.log(addTen(5));

SNS COLLEGE OF ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE
AND ENGINEERING

Javascript BASICS

JAVASCRIPT

• JavaScript is a programming language used to
create dynamic content for websites.

• It is a lightweight, cross-platform

• It is a single-threaded programming language

• JavaScript is an interpreted language

JAVA SCRIPT

• JavaScript on the client side is directly executed in the user's browser.

• Almost all browsers have JavaScript Interpreter and do not need to
install any software.

• JavaScript is also used on the Server side (on Web Servers) to access
databases, file handling and security features to send responses, to
browsers.

https://www.geeksforgeeks.org/web-server-and-its-type/

JAVASCRIPT

• The Document Object Model (DOM) provides interfaces for
interacting with elements on web pages

• The Browser Object Model (BOM) provides the browser API
for interacting with the web browser.

• JavaScript allows you to add interactivity to a web page.
Typically, you use JavaScript with HTML and CSS to enhance a
web page’s functionality, such as validating forms, creating
interactive maps, and displaying animated charts.

https://www.javascripttutorial.net/javascript-dom/
https://www.javascripttutorial.net/javascript-bom/
https://www.javascripttutorial.net/javascript-dom/javascript-form-validation/

JAVASCRIPT

• When a web page is loaded, i.e., after HTML and CSS have
been downloaded,

• The JavaScript engine in the web browser executes the
JavaScript code.

• The JavaScript code then modifies the HTML and CSS to
update the user interface dynamically.

• The JavaScript engine is a component of web browsers
responsible for interpreting and executing JavaScript code.

JAVASCRIPT

• It includes a parser to analyze the code, a compiler to
convert it into machine code, and an interpreter to run the
compiled code.

• Initially, JavaScript engines were implemented as
interpreters.

• However, modern JavaScript engines are commonly
implemented as just-in-time compilers that compile
JavaScript code to bytecode for improved performance.

SNS COLLEGE OF ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE
AND ENGINEERING

CLIENT vs SERVER JAVA SCRIPT

Client-side vs. Server-side JavaScript

•When JavaScript is used on a web page, it is
executed in web browsers, serving as a client-side
language.

• JavaScript can run on both web browsers and
servers. A popular JavaScript server-side
environment is Node.js. Unlike client-side JavaScript,
server-side JavaScript executes on the server and
allows you to access databases, file systems, etc.

https://www.javascripttutorial.net/nodejs-tutorial/

SNS COLLEGE OF ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE
AND ENGINEERING

JAVASCRIPT BASICS

BASIC EXAMPLE

Javascript example is easy to code.

JavaScript provides 3 places to put the JavaScript code:

•within body tag,

•within head tag and

• external JavaScript file.

BASIC EXAMPLE

•The script tag specifies that we are using
JavaScript.

•The text/javascript is the content type that
provides information to the browser about the
data.

•The document.write() function is used to display
dynamic content through JavaScript. We will
learn about document object in detail later.

BASIC EXAMPLE

•<script type="text/javascript">

•document.write("JavaScript is a simple language
for javatpoint learners");

•</script>

JavaScript Example : code between the head tag

• <html>

• <head>

• <script type="text/javascript">

• function msg(){

• alert("Hello Javatpoint");

• }

• </script>

• </head>

JavaScript Example : code between the head tag

• <html>

• <head>

• <script type="text/javascript">

• function msg(){

• alert("Hello Javatpoint");

• }

• </script>

• </head>

External JavaScript file

•We can create external JavaScript file and
embed it in many html page.

• It provides code re usability because single
JavaScript file can be used in several html
pages.

•An external JavaScript file must be saved by .js
extension. It increases the speed of the
webpage.

External JavaScript file

•message.js

• function msg(){

• alert("Hello Javatpoint");

• }

External JavaScript file

• <html>

• <head>

• <script type="text/javascript" src="message.js"></script>

• </head>

• <body>

• <p>Welcome to JavaScript</p>

• <form>

• <input type="button" value="click" onclick="msg()"/>

• </form>

• </body>

• </html>

SNS COLLEGE OF ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE
AND ENGINEERING

JAVASCRIPT VARIABLE

JS VARIABLE

• A JavaScript variable is simply a name of storage location.

• The actual value of a variable can be changed at any time.

• Name must start with a letter (a to z or A to Z), underscore(_), or
dollar($) sign.

• After first letter we can use digits (0 to 9), for example value1.

• JavaScript variables are case sensitive, for example x and X are
different variables.

JS VARIABLE

• Using Case in Variables: In JavaScript variables are case-sensitive. For
Example: "total" and "TOTAL" have different meanings in JavaScript.

• If you are using a variable name that consists of only a word, it is
make sure that easier way to use lowercase letters.

• If you are using a variable name with two words such as "total count".
It's better to capitalize the first letter of the word. For example.
"Total_Count", etc.

JS VARIABLE

• Allowed special characters: An important rule to remember is that
variable name must start with a letter (a to z or A to Z), underscore(_
), or dollar($) sign. For example: "_totalpay", Total_Count etc.

• After the first letter, we can use digits (0 to 9), for example: "value1".

• Avoiding Reserved Words: When naming variables in JavaScript avoid
the use of the reserved word. For example: "if", "case" etc.

Declaring Variables

• To declare text as a variable, you can use the "var" or "let" keyword.
The Following syntax is used for declaring a variable in JavaScript:

• Syntax:

• var variable_name;

• In the above syntax, "var" is a keyword and "variable_name" is a
name given to a variable.

• For Example:

• var total_amount;

ASSIGNING VALUES

• For assigning a value to a variable, you can use the JavaScript
assignment operator (=).

• Syntax:

• var variable_name = value;

• In the above syntax, "var" is a keyword, "variable_name" is a name
given to a variable and value is used to assign a value to a variable.

• For Example:

• var total_amount = 500;

•

ASSIGNING VALUES

• <script>

• var x = 10;

• var y = 20;

• var z=x+y;

• document.write(z);

• </script>

•

TYPES OF VARIABLE

• A JavaScript local variable is declared inside block or function. It is accessible within the function
or block only. For example:

• <script>

• function abc(){

• var x=10;//local variable

• }

• </script>

• Or,

• <script>

• If(10<13){

• var y=20;//JavaScript local variable

• }

• </script>

TYPES OF VARIABLE

• JavaScript global variable

• A JavaScript global variable is accessible from any function. A variable i.e. declared outside the function or
declared with window object is known as global variable. For example:

• <script>

• var data=200;//gloabal variable

• function a(){

• document.writeln(data);

• }

• function b(){

• document.writeln(data);

• }

• a();//calling JavaScript function

• b();

• </script>

SNS COLLEGE OF ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE
AND ENGINEERING

JAVASCRIPT DATATYPES

JS DATATYPES

• JavaScript provides different data types to hold different
types of values. There are two types of data types in
JavaScript.

• Primitive data type

• Non-primitive (reference) data type

• JavaScript is a dynamic type language, means you don't
need to specify type of the variable because it is dynamically
used by JavaScript engine.

JS DATATYPES

•You need to use var here to specify the
data type. It can hold any type of values
such as numbers, strings etc. For
example:

•var a=40;//holding number

•var b="Rahul";//holding string

JavaScript primitive data types

JavaScript nonprimitive data types

ID SELECTOR

• Write a JavaScript function to calculate the sum of two numbers. ...

• Write a JavaScript program to find the maximum number in an array. ...

• Write a JavaScript function to check if a given string is a palindrome (reads the same forwards and backwards).

• Top 50 JavaScript coding Interview Questions and Answers | Keka

https://www.keka.com/javascript-coding-interview-questions-and-answers

