
1/X

SNS COLLEGE OF ENGINEERING 
Kurumbapalayam (Po), Coimbatore – 641 107

An Autonomous Institution
Accredited by NAAC – UGC with ‘A’ Grade

Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

23CSB101 

OBJECT ORIENTED PROGRAMMING 

Access Specifiers and Static members 

By
M.Kanchana

Assistant Professor/CSE

* INTRODUCTION/ OOPS  /KANCHANA MOORTHY/AP/CSE/SNSCE



INTRODUCTION/ OOPS  /KANCHANA MOORTHY/AP/CSE/SNSCE

Access Specifiers

* 2/13

Access specifiers are used to specify the visibility and accessibility of a 

class constructors, member variables and methods.

Types:

1. Public

2. Private

3. Protected

4. Default (package)



INTRODUCTION/ OOPS  /KANCHANA MOORTHY/AP/CSE/SNSCE

Access Specifiers

* 3/13

Public (anything declared as public can be accessed from 

anywhere):

A variable or method declared/defined with the public modifier can be

accessed anywhere in the program through its class objects, through its

subclass objects and through the objects of classes of other packages

also.

Private (anything declared as private can’t be seen outside of the 

class):

The instance variable or instance methods declared/initialized as private 

can be accessed only by its class. Even its subclass is not able to access 

the private members.



INTRODUCTION/ OOPS  /KANCHANA MOORTHY/AP/CSE/SNSCE

Access Specifiers

* 4/13

Protected (anything declared as protected can be accessed by 

classes in the same package and subclasses in the other packages):

The protected access specifier makes the instance variables and instance

methods visible to all the classes, subclasses of that package and

subclasses of other packages.

Default (can be accessed only by the classes in the same package):

The default access modifier is friendly. This is similar to public

modifier except only the classes belonging to a particular package

knows the variables and methods.



INTRODUCTION/ OOPS  /KANCHANA MOORTHY/AP/CSE/SNSCE

Access Specifiers

* 5/13



INTRODUCTION/ OOPS  /KANCHANA MOORTHY/AP/CSE/SNSCE

Packages and Access Specifiers

* 6/13

Creating Own Package

• Choose a package name (e.g., mypackage1).

• Add the package keyword at the top of the Java file.

• Save the file inside a folder with the same name as the package.

package packagename;

package mypackage1;

public class FirstClass {

public String i = "I am public variable";      

protected String j = "I am protected variable"; 

private String k = "I am private variable";    

String r = "I don't have any modifier";      

}



INTRODUCTION/ OOPS  /KANCHANA MOORTHY/AP/CSE/SNSCE

Packages and Access Specifiers

* 7/13

Compilation Command:

javac -d . mypackage1\FirstClass.java

-d . → Saves the compiled .class file inside the package directory mypackage1.

D:\JAVA Programs\

├── mypackage1\

│   ├── FirstClass.class

.

Run:

java  mypackage1.FirstClass



INTRODUCTION/ OOPS  /KANCHANA MOORTHY/AP/CSE/SNSCE

Packages and Access Specifiers

* 8/13

package mypackage2;  

import mypackage1.FirstClass;  

class SecondClass extends FirstClass

{  

void method() {

System.out.println(i);

System.out.println(j); 

System.out.println(k);

System.out.println(r); 

}public static void main(String arg[]) {

SecondClass obj = new SecondClass();  

obj.method();

}



INTRODUCTION/ OOPS  /KANCHANA MOORTHY/AP/CSE/SNSCE

Packages and Access Specifiers

* 9/13

if SecondClass.java depends on FirstClass.java, so we need to set the classpath

(cp)

javac -d . -cp . mypackage2\SecondClass.java

-cp .           tells Java to look in the current directory (.) for other compiled 

classes

D:\JAVA Programs\

├── mypackage1\

│   ├── FirstClass.class

├── mypackage2\

│   ├── SecondClass.class

.

Run:

java  mypackage2.SecondClass



INTRODUCTION/ OOPS  /KANCHANA MOORTHY/AP/CSE/SNSCE

Packages and Access Specifiers

* 10/13

if SecondClass.java depends on FirstClass.java, so we need to set the classpath

(cp)

javac -d . -cp . mypackage2\SecondClass.java

-cp .           tells Java to look in the current directory (.) for other compiled 

classes

D:\JAVA Programs\

├── mypackage1\

│   ├── FirstClass.class

├── mypackage2\

│   ├── SecondClass.class

.

Run:

java  mypackage2.SecondClass



INTRODUCTION/ OOPS  /KANCHANA MOORTHY/AP/CSE/SNSCE

Packages and Access Specifiers

* 11/13

.

mypackage2\SecondClass.java:7: error: k has private access in FirstClass

System.out.println(k);

mypackage2\SecondClass.java:8: error: r is not public in FirstClass; cannot be 

accessed from outside package

System.out.println(r);



INTRODUCTION/ OOPS  /KANCHANA MOORTHY/AP/CSE/SNSCE

MCQ

* 12/13

.

public class Car {

private String model;  // 'model' is private

public Car(String model) {

this.model = model;

}

public void displayModel() {

System.out.println("Car model: " + model);

}

}

public class TestCar {

public static void main(String[] args) 

{

Car car = new Car("Toyota");

System.out.println("Model: " + car.model);

car.displayModel();

}

}

What is the error in the code above regarding access specifiers, and how can 

it be fixed?



INTRODUCTION/ OOPS  /KANCHANA MOORTHY/AP/CSE/SNSCE

MCQ

* 13/13

.

public class Car {

private String model;  // 'model' is private

public Car(String model) {

this.model = model;

}

public String getModel() {

return model;

}

public void displayModel() {

System.out.println("Car model: " + 

model);

}

}

public class TestCar {

public static void main(String[] 

args) {

Car car = new Car("Toyota");

System.out.println("Model: " + 

car.getModel());

car.displayModel();

}

}



INTRODUCTION/ OOPS  /KANCHANA MOORTHY/AP/CSE/SNSCE

Static Members 

* 14/13

• Static Members are variables and methods that belong to a static or 

non-static class rather than to the objects of the class. 

• Hence it is not necessary to create object of that class to invoke 

static members

this refers to the current object

static methods don’t belong to an object

The static can be:

1.variable (also known as class variable)

2.method (also known as class method)

3.block

4.nested class



INTRODUCTION/ OOPS  /KANCHANA MOORTHY/AP/CSE/SNSCE

Static Members 

* 15/13

Static Variables (Class Variables):

When a member variable is declared with the static keyword, then it is

called static variable and it can be accessed before any objects of its class

are created, and without reference to any object.

Syntax to declare a static variable:

[access_specifier] static data_type instance_variable;



INTRODUCTION/ OOPS  /KANCHANA MOORTHY/AP/CSE/SNSCE

Static Members 

* 16/13

• When a static variable is loaded in memory (static pool) it creates only a

single copy of static variable and shared among all the objects of the class.

• A static variable can be accessed outside of its class directly by the class

name anddoesn‘t need any object.

Syntax : <class-name>.<variable-name>



INTRODUCTION/ OOPS  /KANCHANA MOORTHY/AP/CSE/SNSCE

Static Members 

* 17/13

.
class Student {

static int totalStudents = 10;

}

public class Main {

public static void main(String[] args) {

System.out.println("Total Students: " + Student.totalStudents); 

}

}

Output

10



INTRODUCTION/ OOPS  /KANCHANA MOORTHY/AP/CSE/SNSCE

Static Members 

* 18/13

Static Method:

If a method is declared with the static keyword , then it is known as static 

method.

• A static method belongs to the class rather than the object of a class.

• A static method can be invoked without the need for creating an instance of a 

class.

• A static method can access static data member and can change the value of it.



INTRODUCTION/ OOPS  /KANCHANA MOORTHY/AP/CSE/SNSCE

Static Members 

* 19/13

Syntax: (defining static method)

[access_specifier] static  Return_type method_name(parameter_list)

{

// method body

}

Syntax to access static method: 

<class-name>.<method-name>

The most common example of a static member is main( ). main( ) is declared as 

static   because it must be called before any objects exist.



INTRODUCTION/ OOPS  /KANCHANA MOORTHY/AP/CSE/SNSCE

Static Members 

* 20/13

class calsquare {

static int square(int number) {

return number * number;

}

}

public class Main {

public static void main(String[] args) {

System.out.println(calsquare .square(5)); // Output: 25

}

}



INTRODUCTION/ OOPS  /KANCHANA MOORTHY/AP/CSE/SNSCE

Static Members 

* 21/13

Static Block:

• Static block is used to initialize the static data member like constructors

helps to initialize instance members and it gets executed exactly once, when 

the class is first loaded.

• It is executed before main method at the time of class loading in JVM.

Syntax:

class classname

{

static

{

// block of statements

}

}



INTRODUCTION/ OOPS  /KANCHANA MOORTHY/AP/CSE/SNSCE

Static Members 

* 22/13

class Example {

static int count;

static {

count = 100;

System.out.println("Static block executed!");

}

}

public class Main {

public static void main(String[] args) {

System.out.println(Example.count); 

}

}

Output 

Static block executed! 

100



INTRODUCTION/ OOPS  /KANCHANA MOORTHY/AP/CSE/SNSCE

Static Members 

* 23/13

class Student {

int rollno;

String name;

static String college = "SNSCE";

static void change() {

college = "SNSCT";

}

Student(int r, String n) {

rollno = r;

name = n;

}

void display() {

System.out.println(rollno + " " + name + " " + college);

}

}

public class TestStaticMembers {

static {

System.out.println("*** STATIC MEMBERS – DEMO 

***");

}

public static void main(String args[]) {

Student.change(); 

Student s1 = new Student(111, "Karan");

Student s2 = new Student(222, "Aryan");

Student s3 = new Student(333, "Sonoo");

s1.display();

s2.display();

s3.display();

}

}



INTRODUCTION/ OOPS  /KANCHANA MOORTHY/AP/CSE/SNSCE

Static Members 

* 24/13

Output:

*** STATIC MEMBERS – DEMO ***

111 Karan SNSCT

222 Aryan SNSCT

333 Sonoo SNSCT



INTRODUCTION/ OOPS  /KANCHANA MOORTHY/AP/CSE/SNSCE

MCQ

* 25/13

1. What is the keyword used to make a method belong to the class 

rather than an instance?

A) Public 

B) private

C) static

D) protected



INTRODUCTION/ OOPS  /KANCHANA MOORTHY/AP/CSE/SNSCE

MCQ

* 26/13

1. What is the keyword used to make a method belong to the class 

rather than an instance?

A) Public 

B) private

C) static

D) protected



INTRODUCTION/ OOPS  /KANCHANA MOORTHY/AP/CSE/SNSCE

MCQ

* 27/13

1. Can a static method access non-static variables directly?

A) Yes

B) No



INTRODUCTION/ OOPS  /KANCHANA MOORTHY/AP/CSE/SNSCE

MCQ

* 28/13

1. Can a static method access non-static variables directly?

A) Yes

B) No



INTRODUCTION/ OOPS  /KANCHANA MOORTHY/AP/CSE/SNSCE

MCQ

* 29/13

3.What will happen if we declare the main method as private?

class Main {

private static void main(String[] args) {

System.out.println("Hello");

}

}

A) Compilation error

B) Runtime error

C) Hello

D) No output



INTRODUCTION/ OOPS  /KANCHANA MOORTHY/AP/CSE/SNSCE

MCQ

* 30/13

3.What will happen if we declare the main method as private?

class Main {

private static void main(String[] args) {

System.out.println("Hello");

}

}

A) Compilation error

B) Runtime error

C) Hello

D) No output



INTRODUCTION/ OOPS  /KANCHANA MOORTHY/AP/CSE/SNSCE

Assignment 

* 31/13

1. Can we override static methods in Java?

2. Can we use this in a static method?

3. What happens if we declare a constructor as private?

4. Can a static method be private?



* INTRODUCTION/ OOPS  /KANCHANA MOORTHY/AP/CSE/SNSCE 32/13

THANK YOU


