
SNS COLLEGE OF ENGINEERING
Kurumbapalayam (Po), Coimbatore – 641 107

An Autonomous Institution
Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE NAME : 23CST101 C PROGRAMMING AND DATA
STRUCTURES

I YEAR / II SEMESTER

Unit 1- C PROGRAMMING FUNDAMENTALS- A REVIEW

Topic 15 : Pointer: Pointer operation-Pointer arithmetic

3 March 2025 Pointer: Pointer operation-Pointer arithmetic/ 23CST101 C PROGRAMMING AND DATA STRUCTURES/K.KARTHIKEYAN/CSE/SNSCE 1/25

Brain Storming

1.How to access memory location?

• Hint: int a=5;

• Single storage location is alloted for 5 in a variable “a”.

• How to access memory location?

3 March 2025 Pointer: Pointer operation-Pointer arithmetic/ 23CST101 C PROGRAMMING AND DATA STRUCTURES/K.KARTHIKEYAN/CSE/SNSCE 2/25

3 March 2025 Pointer: Pointer operation-Pointer arithmetic/ 23CST101 C PROGRAMMING AND DATA STRUCTURES/K.KARTHIKEYAN/CSE/SNSCE 3/25

Pointer

• The pointer in C language is a variable which stores the address of

another variable.

• This variable can be of type int, char, array, function, or any other

pointer.

• The size of the pointer depends on the architecture.

• However, in 32-bit architecture the size of a pointer is 2 byte.

Example

3 March 2025 Pointer: Pointer operation-Pointer arithmetic/ 23CST101 C PROGRAMMING AND DATA STRUCTURES/K.KARTHIKEYAN/CSE/SNSCE 4/25

• int *a;//pointer to int
• char *c;//pointer to char

3 March 2025 Pointer: Pointer operation-Pointer arithmetic/ 23CST101 C PROGRAMMING AND DATA STRUCTURES/K.KARTHIKEYAN/CSE/SNSCE 5/25

Pointer Operator

Operator Operator Name Purpose

* Value at Operator
Gives Value stored at
Particular address

& Address Operator
Gives Address of
Variable

Example program

3 March 2025 Pointer: Pointer operation-Pointer arithmetic/ 23CST101 C PROGRAMMING AND DATA STRUCTURES/K.KARTHIKEYAN/CSE/SNSCE 6/25

#include<stdio.h>

int main()

{

int number=50;

int *p;

p=&number; // or int *p=&number

printf("Address of p variable is %x

\n",p);

printf("Value of p variable is %d

\n",*p);

return 0;

}

OUTPUT:

Address of p variable is fff4

Value of p variable is 50

3 March 2025 Pointer: Pointer operation-Pointer arithmetic/ 23CST101 C PROGRAMMING AND DATA STRUCTURES/K.KARTHIKEYAN/CSE/SNSCE 7/25

Address Of (&) Operator

• The address of operator '&' returns the address of a

variable.

• But, we need to use %u to display the address of a

variable.

Example…

3 March 2025 Pointer: Pointer operation-Pointer arithmetic/ 23CST101 C PROGRAMMING AND DATA STRUCTURES/K.KARTHIKEYAN/CSE/SNSCE 8/25

#include<stdio.h>

int main(){

int number=50;

printf("value of number is %d,

address of number is

%u",number,&number);

return 0;

}

Output

value of number is 50,

address of number is fff4

3 March 2025 Pointer: Pointer operation-Pointer arithmetic/ 23CST101 C PROGRAMMING AND DATA STRUCTURES/K.KARTHIKEYAN/CSE/SNSCE 9/25

NULL Pointer

• A pointer that is not assigned any value but NULL is known as the

NULL pointer.

• If you don't have any address to be specified in the pointer at the

time of declaration, you can assign NULL value.

• int *p=NULL;

3 March 2025 Pointer: Pointer operation-Pointer arithmetic/ 23CST101 C PROGRAMMING AND DATA STRUCTURES/K.KARTHIKEYAN/CSE/SNSCE 10/25

Pointer Arithmetic

• Following arithmetic operations are possible on the pointer in C

language:

• Increment

• Decrement

• Addition

• Subtraction

• Comparison

3 March 2025 Pointer: Pointer operation-Pointer arithmetic/ 23CST101 C PROGRAMMING AND DATA STRUCTURES/K.KARTHIKEYAN/CSE/SNSCE 11/25

Incrementing Pointer in C

• If we increment a pointer by 1, the pointer will start pointing to

the immediate next location.

• This is somewhat different from the general arithmetic since the

value of the pointer will get increased by the size of the data type

to which the pointer is pointing.

• The Rule to increment the pointer is given below:

• new_address= current_address + i * size_of(data type)

Conti…

3 March 2025 Pointer: Pointer operation-Pointer arithmetic/ 23CST101 C PROGRAMMING AND DATA STRUCTURES/K.KARTHIKEYAN/CSE/SNSCE 12/25

Where i is the number by which the pointer get increased.

32-bit:

For 32-bit int variable, it will be incremented by 2

bytes.

64-bit:

For 64-bit int variable, it will be incremented by 4

bytes.

3 March 2025 Pointer: Pointer operation-Pointer arithmetic/ 23CST101 C PROGRAMMING AND DATA STRUCTURES/K.KARTHIKEYAN/CSE/SNSCE 13/25

Let's see the example of incrementing pointer variable on
64-bit architecture.

#include<stdio.h>

int main(){

int number=50;

int *p;//pointer to int

p=&number;//stores the address of number variable

printf("Address of p variable is %u \n",p);

p=p+1;

printf("After increment: Address of p variable is %u \n",p); // in our

case, p will get incremented by 4 bytes.

return 0;

}

3 March 2025 Pointer: Pointer operation-Pointer arithmetic/ 23CST101 C PROGRAMMING AND DATA STRUCTURES/K.KARTHIKEYAN/CSE/SNSCE 14/25

Output

• Address of p variable is 3214864300

• After increment: Address of p variable is 3214864304

• This is similar for Decrementing Pointer

• Address of p variable is 3214864300

• After Decrement: Address of p variable is 3214864296

3 March 2025 Pointer: Pointer operation-Pointer arithmetic/ 23CST101 C PROGRAMMING AND DATA STRUCTURES/K.KARTHIKEYAN/CSE/SNSCE 15/25

Traversing an array by using pointer

#include<stdio.h>

void main ()

{

int arr[5] = {1, 2, 3, 4, 5};

int *p = arr;

int i;

printf("printing array elements...\n"

);

for(i = 0; i< 5; i++)

{

printf("%d ",*(p+i));

}

}

OUTPUT:
printing array
elements...

1 2 3 4 5

3 March 2025 Pointer: Pointer operation-Pointer arithmetic/ 23CST101 C PROGRAMMING AND DATA STRUCTURES/K.KARTHIKEYAN/CSE/SNSCE 16/25

C Pointer Addition

• We can add a value to the pointer variable. The formula of

adding value to pointer is given below:

• new_address= current_address + (number * size_of(data t

ype))

• 32-bit

• For 32-bit int variable, it will add 2 * number.

• 64-bit

• For 64-bit int variable, it will add 4 * number.

3 March 2025 Pointer: Pointer operation-Pointer arithmetic/ 23CST101 C PROGRAMMING AND DATA STRUCTURES/K.KARTHIKEYAN/CSE/SNSCE 17/25

Let's see the example of adding value to pointer variable
on 64-bit architecture.

#include<stdio.h>
int main(){
int number=50;
int *p; //pointer to int
p=&number; //stores the address of number variable
printf("Address of p variable is %u \n",p);
p=p+3; //adding 3 to pointer variable
printf("After adding 3: Address of p variable is %u \n",p);
return 0;
}

3 March 2025 Pointer: Pointer operation-Pointer arithmetic/ 23CST101 C PROGRAMMING AND DATA STRUCTURES/K.KARTHIKEYAN/CSE/SNSCE 18/25

Output

• Address of p variable is 3214864300
• After adding 3: Address of p variable is 3214864312

• This is similar for Pointer Subtraction
• Address of p variable is 3214864300
• After subtracting 3: Address of p variable is

3214864288

3 March 2025 Pointer: Pointer operation-Pointer arithmetic/ 23CST101 C PROGRAMMING AND DATA STRUCTURES/K.KARTHIKEYAN/CSE/SNSCE 19/25

Illegal arithmetic with pointers

• Address + Address = illegal

• Address * Address = illegal

• Address % Address =

illegal

• Address / Address = illegal

• Address & Address =

illegal

• Address ^ Address = illegal

• Address | Address = illegal

• ~Address = illegal

3 March 2025 Pointer: Pointer operation-Pointer arithmetic/ 23CST101 C PROGRAMMING AND DATA STRUCTURES/K.KARTHIKEYAN/CSE/SNSCE 20/25

Pointer to Pointer / Double
Pointer

• A pointer to a pointer is a form of multiple indirection, or a chain of
pointers.

• Normally, a pointer contains the address of a variable.
• When we define a pointer to a pointer, the first pointer contains the

address of the second pointer, which points to the location that contains
the actual value as shown below.

3 March 2025 Pointer: Pointer operation-Pointer arithmetic/ 23CST101 C PROGRAMMING AND DATA STRUCTURES/K.KARTHIKEYAN/CSE/SNSCE 21/25

Example…

OUTPUT

3 March 2025 Pointer: Pointer operation-Pointer arithmetic/ 23CST101 C PROGRAMMING AND DATA STRUCTURES/K.KARTHIKEYAN/CSE/SNSCE 22/25

Example 1:

Pointers and

Arrays

3 March 2025 Pointer: Pointer operation-Pointer arithmetic/ 23CST101 C PROGRAMMING AND DATA STRUCTURES/K.KARTHIKEYAN/CSE/SNSCE 23/25

Example 1:

Pointers and

Arrays&x[1] is equivalent to x+1 and x[1] is equivalent to *(x+1).

&x[2] is equivalent to x+2 and x[2] is equivalent to *(x+2).

...

Basically, &x[i] is equivalent to x+i and x[i] is equivalent to *(x+i).

3 March 2025 Pointer: Pointer operation-Pointer arithmetic/ 23CST101 C PROGRAMMING AND DATA STRUCTURES/K.KARTHIKEYAN/CSE/SNSCE 24/25

Example 2: Pointers and Arrays

Assessment 1

1. What is pointer?

Ans : ___

2. Write about pointer arithmetic operations ?

Ans : ___

3 March 2025 Pointer: Pointer operation-Pointer arithmetic/ 23CST101 C PROGRAMMING AND DATA STRUCTURES/K.KARTHIKEYAN/CSE/SNSCE 25/25

References

Thank You

1. Reema Thareja, “Programming in C”, Oxford University Press,

Second Edition, 2016

3 March 2025 Pointer: Pointer operation-Pointer arithmetic/ 23CST101 C PROGRAMMING AND DATA STRUCTURES/K.KARTHIKEYAN/CSE/SNSCE 26/25

