
Operating System Handout 

 Page 1 of 12 

 

 

Unit II – Process Management 

Definition: 

A process is basically a program in execution or instance of the program execution. The 

execution of a process must progress in a sequential fashion. 

 Process is not as same as program code but a lot more than it. 

 A process is an 'active' entity as opposed to program which is considered to be a 

'passive' entity. 

 Attributes held by process include hardware state, memory, CPU etc. 

 

Process memory is divided into four sections for efficient working : 

 The Text section is made up of the compiled program code, read in from non- 

volatile storage when the program is launched. 

 The Data section is made up the global and static variables, allocated and 

initialized prior to executing the main. 

 The Heap is used for the dynamic memory allocation, and is managed via calls 

to new, delete, malloc, free, etc. 

 The Stack is used for local variables. Space on the stack is reserved for local 

variables when they are declared. 

 

Process States: 

When a process executes, it passes through different states. These stages may differ in 

different operating systems. 



Operating System Handout 

 Page 2 of 12 

 

 

In general, a process can have one of the following five states at a time. 

 

S.N. State & Description 

1 Start: This is the initial state when a process is first started/created. 

 

2 

Ready: The process is waiting to be assigned to a processor. Ready processes are 

waiting to have the processor allocated to them by the operating system so that they 

can run. Process may come into this state after Start state or while running it by but 

interrupted by the scheduler to assign CPU to some other process. 

3 
Running: Once the process has been assigned to a processor by the OS scheduler, the 

process state is set to running and the processor executes its instructions. 

4 
Waiting: Process moves into the waiting state if it needs to wait for a resource, such as 

waiting for user input, or waiting for a file to become available. 

 

5 

Terminated or Exit: Once the process finishes its execution, or it is terminated by the 

operating system, it is moved to the terminated state where it waits to be removed from 

main memory. 

 

Process State Diagram 

Process Control Block (PCB): 

 A Process Control Block is a data structure maintained by the Operating System 

for every process. 

 The PCB is identified by an integer process ID (PID). 

 A PCB keeps all the information needed to keep track of a process as listed below 

in the table – 

 

S.N. Information & Description 

1 
Process State: The current state of the process i.e., whether it is ready, running, 

waiting, or whatever. 

2 Process privileges: This is required to allow/disallow access to system resources. 

3 Process ID: Unique identification for each of the process in the operating system. 

4 Pointer: A pointer to parent process. 

5 
Program Counter: Program Counter is a pointer to the address of the next instruction 

to be executed for this process. 

6 
CPU registers: Various CPU registers where process need to be stored for execution 

for running state. 



Operating System Handout 

 Page 3 of 12 

 

 

 

7 
CPU Scheduling Information: Process priority and other scheduling information 

which is required to schedule the process. 

8 
Memory management information: This includes the information of page table, 

memory limits, Segment table depending on memory used by the operating system. 

9 
Accounting information: This includes the amount of CPU used for process 

execution, time limits, execution ID etc. 

10 IO status information: This includes a list of I/O devices allocated to the process. 

The architecture of a PCB is completely dependent on Operating System and may contain 

different information in different operating systems. Here is a simplified diagram of a PCB − 
 

 

Process Control Block (PCB) Diagram 

 

The PCB is maintained for a process throughout its lifetime, and is deleted once the process 

terminates. 

 

3.2 Process Scheduling 

Definition 

 The process scheduling is the activity of the process manager that handles the 

removal of the running process from the CPU and the selection of another process 

on the basis of a particular strategy.

 Process scheduling is an essential part of a Multiprogramming operating systems.

 Such operating systems allow more than one process to be loaded into the executable 

memory at a time and the loaded process shares the CPU using time multiplexing.



Operating System Handout 

 Page 4 of 12 

 

 

What are Scheduling Queues? 

 All processes, upon entering into the system, are stored in the Job Queue.

 Processes in the Ready state are placed in the Ready Queue.
 Processes waiting for a device to become available are placed in Device Queues. 

There are unique device queues available for each I/O device.

A new process is initially put in the Ready queue. It waits in the ready queue until it is 

selected for execution (or dispatched). Once the process is assigned to the CPU and is 

executing, one of the following several events can occur: 

 The process could issue an I/O request, and then be placed in the I/O queue.

 The process could create a new sub-process and wait for its termination.
 The process could be removed forcibly from the CPU, as a result of an interrupt, 

and be put back in the ready queue.

 

 

In the first two cases, the process eventually switches from the waiting state to the ready 

state, and is then put back in the ready queue. A process continues this cycle until it 

terminates, at which time it is removed from all queues and has its PCB and resources 

deallocated. 

Schedulers: 

 Schedulers are special system software which handle process scheduling in various 

ways.

 Their main task is to select the jobs to be submitted into the system and to decide 

which process to run. Schedulers are of three types −

 Long-Term Scheduler

 Short-Term Scheduler

 Medium-Term Scheduler

Long Term Scheduler 

 It is also called a job scheduler.
 A long-term scheduler determines which programs are admitted to the system for 

processing.

 It selects processes from the queue and loads them into memory for execution.

 Process loads into the memory for CPU scheduling.
 The primary objective of the job scheduler is to provide a balanced mix of jobs, such 

as I/O bound and processor bound.



Operating System Handout 

 Page 5 of 12 

 

 

 It also controls the degree of multiprogramming.

 If the degree of multiprogramming is stable, then the average rate of process creation 

must be equal to the average departure rate of processes leaving the system.

 On some systems, the long-term scheduler may not be available or minimal.

 Time-sharing operating systems have no long term scheduler.

 When a process changes the state from new to ready, then there is use of long-term 

scheduler.

Short Term Scheduler: 

 It is also called as CPU scheduler.
 Its main objective is to increase system performance in accordance with the chosen 

set of criteria.

 It is the change of ready state to running state of the process.
 CPU scheduler selects a process among the processes that are ready to execute and 

allocates CPU to one of them.

 Short-term schedulers, also known as dispatchers, make the decision of which 

process to execute next. Short-term schedulers are faster than long-term schedulers.

Medium Term Scheduler 

 Medium-term scheduling is a part of swapping.

 It removes the processes from the memory.

 It reduces the degree of multiprogramming.

 The medium-term scheduler is in-charge of handling the swapped out-processes.

 A running process may become suspended if it makes an I/O request.
 A suspended process cannot make any progress towards completion.

 In this condition, to remove the process from memory and make space for other 

processes, the suspended process is moved to the secondary storage.

 This process is called swapping, and the process is said to be swapped out or rolled 

out.

 Swapping may be necessary to improve the process mix.

Comparison among Scheduler 

S.N. Long-Term Scheduler Short-Term Scheduler Medium-Term Scheduler 

1 It is a job scheduler It is a CPU scheduler 
It is a process swapping 

scheduler. 

 

2 
Speed is lesser than short 

term scheduler 

Speed is fastest among 

other two 

Speed is in between both 

short and long term 

scheduler. 

 

3 
It controls the degree of 

multiprogramming 

It provides lesser control 

over degree of 

multiprogramming 

It reduces the degree of 

multiprogramming. 

 

4 

It is almost absent or 

minimal in time sharing 

system 

It is also minimal in time 

sharing system 

It is a part of Time sharing 

systems. 

 

5 

It selects processes from 

pool and loads them into 

memory for execution 

It selects those processes 

which are ready to 

execute 

It can re-introduce the 

process into memory and 

execution can be continued. 



Operating System Handout 

 Page 6 of 12 

 

 

Context Switch: 

 A context switch is the mechanism to store and restore the state or context of a CPU 

in Process Control block so that a process execution can be resumed from the same 

point at a later time.

 Using this technique, a context switcher enables multiple processes to share a single 

CPU.

 Context switching is an essential part of a multitasking operating system features.
 When the scheduler switches the CPU from executing one process to execute 

another, the state from the current running process is stored into the process control 

block.

 After this, the state for the process to run next is loaded from its own PCB and used 

to set the PC, registers, etc.

 At that point, the second process can start executing.

 

 Context switches are computationally intensive since register and memory state must 

be saved and restored.

 To avoid the amount of context switching time, some hardware systems employ two 

or more sets of processor registers.

 When the process is switched, the following information is stored for later use.

 Program Counter

 Scheduling information
 Base and limit register value

 Currently used register

 Changed State

 I/O State information

 Accounting information



Operating System Handout 

 Page 7 of 12 

 

 

3.3 Inter-process Communication 
 Processes executing concurrently in the operating system might be either 

independent processes or cooperating processes.

 A process is independent if it cannot be affected by the other processes executing in 

the system.
 Inter Process Communication (IPC) is a mechanism that involves communication 

of one process with another process. This usually occurs only in one system.

 Communication can be of two types −

 Between related processes initiating from only one process, such as parent and 

child processes.

 Between unrelated processes, or two or more different processes.

 Processes can communicate with each other using these two ways:

 Shared Memory

 Message passing

Shared Memory 

 Shared memory is the memory that can be simultaneously accessed by multiple 

processes.

 This is done so that the processes can communicate with each other.

 All POSIX systems, as well as Windows operating systems use shared memory.

Message Queue 

 Multiple processes can read and write data to the message queue without being 

connected to each other.

 Messages are stored in the queue until their recipient retrieves them.

 Message queues are quite useful for inter-process communication and are used 

by most operating systems.

 If two processes p1 and p2 want to communicate with each other, they proceed 

as follow:

 Establish a communication link (if a link already exists, no need to 

establish it again.) 

 Start exchanging messages using basic primitives. 

 We need at least two primitives: 

send(message, destinaion) or send(message) 

receive(message, host) or receive(message) 



Operating System Handout 

 Page 8 of 12 

 

 

3.4 What is Thread? 
 A thread is a flow of execution through the process code, with its own program 

counter that keeps track of which instruction to execute next, system registers which 

hold its current working variables, and a stack which contains the execution history.

 A thread shares with its peer threads few information like code segment, data 

segment and open files.

 When one thread alters a code segment memory item, all other threads see that.

 A thread is also called a lightweight process.

 Threads provide a way to improve application performance through parallelism.
 Threads represent a software approach to improving performance of operating 

system by reducing the overhead thread is equivalent to a classical process.

 Each thread belongs to exactly one process and no thread can exist outside a process. 

Each thread represents a separate flow of control.

 Threads have been successfully used in implementing network servers and web 

server.

 They also provide a suitable foundation for parallel execution of applications on 

shared memory multiprocessors.

 The following figure shows the working of a single-threaded and a multithreaded 

process.

 

Difference between Process and Thread 

S.N. Process Thread 

1 
Process is heavy weight or resource 

intensive. 

Thread is light weight, taking lesser 

resources than a process. 

2 
Process switching needs interaction 

with operating system. 

Thread switching does not need to 

interact with operating system. 

 

3 

In multiple processing environments, 

each process executes the same code 

but has its own memory and file 

resources. 

 

All threads can share same set of open 

files, child processes. 



Operating System Handout 

 Page 9 of 12 

 

 

 

 

4 

If one process is blocked, then no 

other process can execute until the 

first process is unblocked. 

While one thread is blocked and waiting, 

a second thread in the same task can run. 

5 
Multiple processes without using 

threads use more resources. 

Multiple threaded processes use fewer 

resources. 

6 
In multiple processes each process 

operates independently of the others. 

One thread can read, write or change 

another thread's data. 

Advantages of Thread 
 Threads minimize the context switching time.

 Use of threads provides concurrency within a process.

 Efficient communication.

 It is more economical to create and context switch threads.
 Threads allow utilization of multiprocessor architectures to a greater scale and 

efficiency.

Types of Thread 
Threads are implemented in following two ways − 

 User Level Threads − User managed threads.
 Kernel Level Threads − Operating System managed threads acting on kernel, 

an operating system core.

User Level Threads 

 In this case, the thread management kernel is not aware of the existence of 

threads.

 The thread library contains code for creating and destroying threads, for passing 

message and data between threads, for scheduling thread execution and for 

saving and restoring thread contexts.

 The application starts with a single thread.

 



Operating System Handout 

 Page 10 of 12 

 

 

Advantages 
 Thread switching does not require Kernel mode privileges.

 User level thread can run on any operating system.

 Scheduling can be application specific in the user level thread.

 User level threads are fast to create and manage.

Disadvantages 
 In a typical operating system, most system calls are blocking.

 Multithreaded application cannot take advantage of multiprocessing.

Kernel Level Threads 
In this case, thread management is done by the Kernel. There is no thread management 

code in the application area. Kernel threads are supported directly by the operating 

system. Any application can be programmed to be multithreaded. All of the threads 

within an application are supported within a single process. 

The Kernel maintains context information for the process as a whole and for individuals 

threads within the process. Scheduling by the Kernel is done on a thread basis. The 

Kernel performs thread creation, scheduling and management in Kernel space. Kernel 

threads are generally slower to create and manage than the user threads. 

Advantages 

 Kernel can simultaneously schedule multiple threads from the same process on 

multiple processes.

 If one thread in a process is blocked, the Kernel can schedule another thread of 

the same process.

 Kernel routines themselves can be multithreaded.

Disadvantages 

 Kernel threads are generally slower to create and manage than the user threads.

 Transfer of control from one thread to another within the same process requires 

a mode switch to the Kernel.

Multithreading Models 
Some operating system provide a combined user level thread and Kernel level thread 

facility. Solaris is a good example of this combined approach. In a combined system, 

multiple threads within the same application can run in parallel on multiple processors 

and a blocking system call need not block the entire process. Multithreading models are 

three types 

 Many to many relationship.

 Many to one relationship.

 One to one relationship.

Many to Many Model 

 The many-to-many model multiplexes any number of user threads onto an equal or 

smaller number of kernel threads.

 The following diagram shows the many-to-many threading model where 6 user level 
threads are multiplexing with 6 kernel level threads.

 In this model, developers can create as many user threads as necessary and the 

corresponding Kernel threads can run in parallel on a multiprocessor machine.

 This model provides the best accuracy on concurrency and when a thread performs 

a blocking system call, the kernel can schedule another thread for execution.



Operating System Handout 

 Page 11 of 12 

 

 

 

 

Many to One Model 
Many-to-one model maps many user level threads to one Kernel-level thread. Thread 

management is done in user space by the thread library. When thread makes a blocking 

system call, the entire process will be blocked. Only one thread can access the Kernel 

at a time, so multiple threads are unable to run in parallel on multiprocessors. 

If the user-level thread libraries are implemented in the operating system in such a way 

that the system does not support them, then the Kernel threads use the many-to-one 

relationship modes. 

 



Operating System Handout 

 Page 12 of 12 

 

 

One to One Model 

There is one-to-one relationship of user-level thread to the kernel-level thread. This 

model provides more concurrency than the many-to-one model. It also allows another 

thread to run when a thread makes a blocking system call. It supports multiple threads 

to execute in parallel on microprocessors. 

Disadvantage of this model is that creating user thread requires the corresponding 

Kernel thread. OS/2, windows NT and windows 2000 use one to one relationship model. 

 

Difference between User-Level & Kernel-Level Thread 
 

S.N. User-Level Threads Kernel-Level Thread 

1 
User-level threads are faster to create 

and manage. 

Kernel-level threads are slower to 

create and manage. 

2 
Implementation is by a thread library at 

the user level. 

Operating system supports creation of 

Kernel threads. 

3 
User-level thread is generic and can 

run on any operating system. 

Kernel-level thread is specific to the 

operating system. 

4 
Multi-threaded applications cannot take 

advantage of multiprocessing. 

Kernel routines themselves can be 

multithreaded. 

 


	Definition:
	Process States:
	Process State Diagram Process Control Block (PCB):
	3.2 Process Scheduling Definition
	What are Scheduling Queues?
	Schedulers:
	Long Term Scheduler
	Short Term Scheduler:
	Medium Term Scheduler
	Comparison among Scheduler
	3.3 Inter-process Communication
	Shared Memory
	Message Queue

	3.4 What is Thread?
	Difference between Process and Thread
	Types of Thread
	User Level Threads
	Advantages
	Disadvantages
	Kernel Level Threads
	Advantages (1)
	Disadvantages (1)
	Multithreading Models
	Many to Many Model
	Many to One Model
	One to One Model

