
SNS COLLEGE OF ENGINEERING
Kurumbapalayam (Po), Coimbatore – 641 107

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

COURSE NAME : 23CSB101- OBJECT ORIENTED PROGRAMMING

I YEAR /II SEMESTER

Unit II – INHERITANCE, PACKAGES AND INTERFACES

Topic : METHOD OVERLOADING - OBJECTS AS PARAMETERS

– RETURNING OBJECTS

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

METHOD OVERLOADING

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

• Method overloading allows multiple methods in the same class

to have the same name but different parameter lists (number,

type, or order of parameters).

METHOD OVERLOADING

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

• Same Method Name: All overloaded methods must have the same name.

• Different Parameters: Overloaded methods must have different types,

numbers, or orders of parameters.

• Return Type Doesn't Matter: Overloading is based on the method signature

(method name + parameter list), so return type alone cannot differentiate

overloaded methods.

• Access Modifiers Can Vary: Overloaded methods can have different access

levels (e.g., public, private, protected).Exceptions Can Be Different:

Overloaded methods can throw different exceptions.

METHOD OVERLOADING

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

• Advantages:

• Improves Readability: Using the same method name for similar operations

makes the code more intuitive.

• Code Reusability: Eliminates the need to create multiple method names for

the same functionality.

• Compile-Time Polymorphism: Allows a method to behave differently

based on input parameters

METHOD OVERLOADING

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

class MathOperations {

// Method with two int parameters

int add(int a, int b) {

return a + b;

}

// Method with three int parameters

int add(int a, int b, int c) {

return a + b + c;

}

METHOD OVERLOADING

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

// Method with two double parameters

double add(double a, double b) {

return a + b; }

}

public class OverloadingExample {

public static void main(String[] args) {

MathOperations obj = new MathOperations();

System.out.println(obj.add(5, 10)); // Calls add(int, int)

System.out.println(obj.add(5, 10, 15)); // Calls add(int, int, int)

System.out.println(obj.add(5.5, 2.2)); // Calls add(double, double)

}

}

Difference between constructor overloading and method overloading

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

Feature Method Overloading Constructor Overloading

Definition
Defining multiple methods with the same name
but different parameters in the same class.

Defining multiple constructors with different
parameter lists in the same class.

Purpose
Used to perform different operations with the
same method name.

Used to initialize objects in different ways.

Return Type
Can have different return types (but return type
alone cannot differentiate methods).

No return type (constructors do not have a
return type).

Calling Mechanism Called explicitly using an object. Called implicitly when an object is created.

Usage Used to improve readability and code reusability.
Used to provide multiple ways to initialize an
object.

Example
java class MathOps {
int add(int a, int b) { return a + b; }
double add(double a, double b) { return a + b; } }

java class Person {
String name; int age;
Person(String name) { this.name = name; }
Person(String name, int age) { this.name = name;
this.age = age; } }

Objects as Parameters

In Java, objects can be passed as parameters to methods and can

also be returned from methods. This allows for object manipulation

within methods and promotes reusability.

Passing Objects as Parameters

Since Java passes objects by reference, modifications to the

object inside the method affect the original object.

Returning Objects from Methods
A method can return an object, which allows object creation within a method and

returning it for further use.

Example:

Swapping Two Numbers Using Objects demonstrates:

• Passing an object as a parameter to a method.

➢ The swap(Number obj) method takes an object obj as a parameter.

➢ It accesses the values of a and b inside the object.

• Returning an object from a method.

➢ The swap method creates a new object with swapped values.

➢ This new object is returned and assigned to num2.

// Class to hold two numbers

class Number {

int a, b;

// Constructor

Number(int x, int y) {

this.a = x;

this.b = y;

}

Cont…

// Method that takes an object as a parameter and returns a new object

static Number swap(Number obj) {

// Creating a new object with swapped values

return new Number(obj.b, obj.a);

}

// Display method

void display() {

System.out.println("a = " + a + ", b = " + b); }

} Cont…

public class Main {

public static void main(String[] args) {

// Creating an object

Number num1 = new Number(5, 10);

System.out.println("Before Swapping:");

num1.display();

// Calling swap method which takes object as parameter and returns object

Number num2 = Number.swap(num1);

System.out.println("After Swapping:");

num2.display();

}

}

Output:

Before Swapping:

a = 5, b = 10

After Swapping:

a = 10, b = 5

`

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

