
Interprocess Communication

• Processes within a system may be independent or cooperating

• Cooperating process can affect or be affected by other processes, including sharing data

• Reasons for cooperating processes:

• Information sharing

• Computation speedup

• Modularity

• Convenience

• Cooperating processes need interprocess communication (IPC)

• Two models of IPC

• Shared memory

• Message passing

05-03-2025Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Communications Models

(a) Message passing. (b) shared memory.

05-03-2025Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Cooperating Processes

• Independent process cannot affect or be affected by the execution of another

process

• Cooperating process can affect or be affected by the execution of another

process

• Advantages of process cooperation

• Information sharing

• Computation speed-up

• Modularity

• Convenience

05-03-2025Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Producer-Consumer Problem

• Paradigm for cooperating processes, producer process produces

information that is consumed by a consumer process

• unbounded-buffer places no practical limit on the size of the

buffer

• bounded-buffer assumes that there is a fixed buffer size

05-03-2025Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Bounded-Buffer – Shared-
Memory Solution

• Shared data

#define BUFFER_SIZE 10

typedef struct {

 . . .

} item;

item buffer[BUFFER_SIZE];

int in = 0;

int out = 0;

• Solution is correct, but can only use BUFFER_SIZE-1 elements

05-03-2025Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Bounded-Buffer – Producer

item next_produced;

while (true) {

 /* produce an item in next produced */

 while (((in + 1) % BUFFER_SIZE) == out)

 ; /* do nothing */

 buffer[in] = next_produced;

 in = (in + 1) % BUFFER_SIZE;

}

05-03-2025Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Bounded Buffer – Consumer

item next_consumed;

while (true) {

 while (in == out)

 ; /* do nothing */

 next_consumed = buffer[out];

 out = (out + 1) % BUFFER_SIZE;

 /* consume the item in next consumed */

}

05-03-2025Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Interprocess Communication
– Shared Memory

• An area of memory shared among the processes that wish to communicate

• The communication is under the control of the users processes not the

operating system.

• Major issues is to provide mechanism that will allow the user processes to

synchronize their actions when they access shared memory.

05-03-2025Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Interprocess Communication
 – Message Passing

• Mechanism for processes to communicate and to synchronize their

actions

• Message system – processes communicate with each other without

resorting to shared variables

• IPC facility provides two operations:

• send(message)

• receive(message)

• The message size is either fixed or variable

05-03-2025Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Message Passing (Cont.)

• If processes P and Q wish to communicate, they need to:

• Establish a communication link between them

• Exchange messages via send/receive

• Implementation issues:

• How are links established?

• Can a link be associated with more than two processes?

• How many links can there be between every pair of communicating processes?

• What is the capacity of a link?

• Is the size of a message that the link can accommodate fixed or variable?

• Is a link unidirectional or bi-directional?

05-03-2025Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Message Passing (Cont.)

• Implementation of communication link

• Physical:

• Shared memory

• Hardware bus

• Network

• Logical:

• Direct or indirect

• Synchronous or asynchronous

• Automatic or explicit buffering

05-03-2025Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Direct Communication

• Processes must name each other explicitly:

• send (P, message) – send a message to process P

• receive(Q, message) – receive a message from process Q

• Properties of communication link

• Links are established automatically

• A link is associated with exactly one pair of communicating processes

• Between each pair there exists exactly one link

• The link may be unidirectional, but is usually bi-directional

05-03-2025Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Indirect Communication

• Messages are directed and received from mailboxes (also referred to as ports)

• Each mailbox has a unique id

• Processes can communicate only if they share a mailbox

• Properties of communication link

• Link established only if processes share a common mailbox

• A link may be associated with many processes

• Each pair of processes may share several communication links

• Link may be unidirectional or bi-directional

05-03-2025Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Indirect Communication

• Operations

• create a new mailbox (port)

• send and receive messages through mailbox

• destroy a mailbox

• Primitives are defined as:

 send(A, message) – send a message to mailbox A

 receive(A, message) – receive a message from mailbox A

05-03-2025Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Indirect Communication

• Mailbox sharing

• P1, P2, and P3 share mailbox A

• P1, sends; P2 and P3 receive

• Who gets the message?

• Solutions

• Allow a link to be associated with at most two processes

• Allow only one process at a time to execute a receive operation

• Allow the system to select arbitrarily the receiver. Sender is notified

who the receiver was.

05-03-2025Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Synchronization

• Message passing may be either blocking or non-blocking

• Blocking is considered synchronous

• Blocking send -- the sender is blocked until the message is received

• Blocking receive -- the receiver is blocked until a message is available

• Non-blocking is considered asynchronous

• Non-blocking send -- the sender sends the message and continue

• Non-blocking receive -- the receiver receives:

 - A valid message, or Null message

05-03-2025Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Synchronization (Cont.)

Producer-consumer becomes trivial

 message next_produced;

 while (true) {
 /* produce an item in next produced */

 send(next_produced);

 }
message next_consumed;
while (true) {
 receive(next_consumed);

 /* consume the item in next consumed */
}

05-03-2025Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Buffering

• Queue of messages attached to the link.

• implemented in one of three ways

1. Zero capacity – no messages are queued on a link.

Sender must wait for receiver (rendezvous)

2. Bounded capacity – finite length of n messages

Sender must wait if link full

3. Unbounded capacity – infinite length

Sender never waits

05-03-2025Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Examples of IPC Systems - POSIX

POSIX Shared Memory

• Process first creates shared memory segment

shm_fd = shm_open(name, O CREAT | O RDWR, 0666);

• Also used to open an existing segment to share it

• Set the size of the object

 ftruncate(shm fd, 4096);

• Now the process could write to the shared memory

• sprintf(shared memory, "Writing to shared memory");

05-03-2025Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Examples of IPC Systems - Mach

• Mach communication is message based

• Even system calls are messages

• Each task gets two mailboxes at creation- Kernel and Notify

• Only three system calls needed for message transfer

 msg_send(), msg_receive(), msg_rpc()

• Mailboxes needed for commuication, created via port_allocate()

• Send and receive are flexible, for example four options if mailbox full:

• Wait indefinitely

• Wait at most n milliseconds

• Return immediately

• Temporarily cache a message
05-03-2025Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

	Slide 1: Interprocess Communication
	Slide 2: Communications Models
	Slide 3: Cooperating Processes
	Slide 4: Producer-Consumer Problem
	Slide 5: Bounded-Buffer – Shared-Memory Solution
	Slide 6: Bounded-Buffer – Producer
	Slide 7: Bounded Buffer – Consumer
	Slide 8: Interprocess Communication – Shared Memory
	Slide 9: Interprocess Communication – Message Passing
	Slide 10: Message Passing (Cont.)
	Slide 11: Message Passing (Cont.)
	Slide 12: Direct Communication
	Slide 13: Indirect Communication
	Slide 14: Indirect Communication
	Slide 15: Indirect Communication
	Slide 16: Synchronization
	Slide 17: Synchronization (Cont.)
	Slide 18: Buffering
	Slide 19: Examples of IPC Systems - POSIX
	Slide 20: Examples of IPC Systems - Mach

