Interprocess Communication

* Processes within a system may be independent or cooperating

» Cooperating process can affect or be affected by other processes, including sharing data

* Reasons for cooperating processes:

* Information sharing
* Computation speedup
* Modularity

* Convenience

* Cooperating processes need interprocess communication (IPC)

 Two models of IPC

 Shared memory
* Message passing

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS 05-03-2025

Communications Models

(a) Message passing. (b) shared memory.

process A process A

orocess B > shared memory «—
process B

message queue
—> Mo (M4 (Mo Mg| ... |Mp |[e—
kernel
kernel

(a) (b)

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS 05-03-2025

Cooperating Processes

» Independent process cannot affect or be affected by the execution of another

process

* Cooperating process can affect or be affected by the execution of another
process
» Advantages of process cooperation
* Information sharing
 Computation speed-up
* Modularity

e Convenience

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S

05-03-2025

Producer-Consumer Problem

» Paradigm for cooperating processes, producer process produces

information that is consumed by a consumer process

* unbounded-buffer places no practical limit on the size of the

buffer

 bounded-buffer assumes that there is a fixed buffer size

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS 05-03-2025

: oundedBuffer - Shared- v \
Memory Solution

 Shared data
#define BUFFER _SIZE 10

typedef struct {

} item;

item buffer|[BUFFER_SIZE];
intin = 0;

int out = 0;

* Solution is correct, but can only use BUFFER_SIZE-1 elements

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS 05-03-2025

Bounded-Buffer - Produce

item next_produced;

while (true) {

/* produce an item in next produced */

while (((in + 1) % BUFFER_SIZE) == out)
; /* do nothing */

buffer[in] = next_produced;

in = (in + 1) % BUFFER_SIZE;

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS 0

I

5-03-2025

e S Bounded Buffer - Consumer

INSTITUTIONS

item next_consumed;

while (true) {
while (in == out)
; /* do nothing */
next_consumed = buffer[out];

out = (out + 1) % BUFFER_SIZE;

/* consume the item in next consumed */

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS 05-03-2025

nterprocess Communication
- Shared Memory
* An area of memory shared among the processes that wish to communicate

* The communication is under the control of the users processes not the

operating system.

* Major issues is to provide mechanism that will allow the user processes to

synchronize their actions when they access shared memory.

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS 05-03-2025

<2145 Saaals

Interprocess Communication
- Message Passing

* Mechanism for processes to communicate and to synchronize their

actions

* Message system - processes communicate with each other without
resorting to shared variables
 IPC facility provides two operations:
* send(message)

* receive(message)

The message size is either fixed or variable

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S

05-03-2025

T —— '—\

Message Passing (Cont.)

* If processes P and Q wish to communicate, they need to:

 Establish a communication link between them

* Exchange messages via send/receive

* Implementation issues:
* How are links established?
* Can a link be associated with more than two processes?
How many links can there be between every pair of communicating processes?
What is the capacity of a link?
[s the size of a message that the link can accommodate fixed or variable?
[s a link unidirectional or bi-directional?

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS 05-03-2025

—— — .
—
— P~

Message Passing (Cont.)

 Physical:
e Shared memory
* Hardware bus
* Network
* Logical:
* Direct or indirect
* Synchronous or asynchronous

* Automatic or explicit buffering

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS 05-03-2025

* Processes must name each other explicitly:
* send (P, message) — send a message to process P

* receive((Q, message) - receive a message from process Q

* Properties of communication link
* Links are established automatically
» Alink is associated with exactly one pair of communicating processes
* Between each pair there exists exactly one link

* The link may be unidirectional, but is usually bi-directional

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS 05-03-2025

Indirect Communication

* Messages are directed and received from mailboxes (also referred to as ports)
* Each mailbox has a unique id

* Processes can communicate only if they share a mailbox

* Properties of communication link

Link established only if processes share a common mailbox

A link may be associated with many processes

Each pair of processes may share several communication links

Link may be unidirectional or bi-directional

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS 05-03-2025

Indirect Communication

* Operations
* create a new mailbox (port)
* send and receive messages through mailbox

* destroy a mailbox
* Primitives are defined as:
send(A, message) - send a message to mailbox A

receive(4, message) - receive a message from mailbox A

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS 05-03-2025

Indirect Communication

* Mailbox sharing
* P, P, and P, share mailbox A
* P, sends; P, and P, receive

* Who gets the message?

* Solutions
» Allow alink to be associated with at most two processes
* Allow only one process at a time to execute a receive operation

« Allow the system to select arbitrarily the receiver. Sender is notified
who the receiver was.

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S

05-03-2025

Synchronization

* Message passing may be either blocking or non-blocking

* Blocking is considered synchronous
* Blocking send -- the sender is blocked until the message is received

* Blocking receive -- the receiver is blocked until a message is available

* Non-blocking is considered asynchronous
* Non-blocking send -- the sender sends the message and continue
* Non-blocking receive -- the receiver receives:

- A valid message, or Null message

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS 05-03-2025

message next_produced;

while (true) {
/* produce an item in next produced */

send(next_produced);

}

message next_consumed;
while (true) {
receive(next_consumed);

/* consume the item in next consumed */

}

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS 05-03-2025

Buffering

* Queue of messages attached to the link.

* implemented in one of three ways

1.Zero capacity - no messages are queued on a link.

Sender must wait for receiver (rendezvous)

2.Bounded capacity - finite length of n messages

Sender must wait if link full

3.Unbounded capacity - infinite length

Sender never waits

Dr.B.Anuradha / ASP / CSD/ SEM 4 / 0S

05-03-2025

POSIX Shared Memory

Process first creates shared memory segment

shm fd = shm open(name, O CREAT | O RDWR, 0666)
Also used to open an existing segment to share it

Set the size of the object

ftruncate (shm £d, 4096) ;
Now the process could write to the shared memory

sprintf (shared memory, "Writing to shared memory") ;

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS 05-03-2025

N

amples of IPC Systems - Mach

* Mach communication is message based

* Even system calls are messages

Each task gets two mailboxes at creation- Kernel and Notify

Only three system calls needed for message transfer

msg send (), msg receive(), msg rpc()

Mailboxes needed for commuication, created via port allocate ()

Send and receive are flexible, for example four options if mailbox full:

* Wait indefinitely
 Wait at most n milliseconds
* Return immediately

* Temporarily cache a message
Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS 05-03-2025

	Slide 1: Interprocess Communication
	Slide 2: Communications Models
	Slide 3: Cooperating Processes
	Slide 4: Producer-Consumer Problem
	Slide 5: Bounded-Buffer – Shared-Memory Solution
	Slide 6: Bounded-Buffer – Producer
	Slide 7: Bounded Buffer – Consumer
	Slide 8: Interprocess Communication – Shared Memory
	Slide 9: Interprocess Communication – Message Passing
	Slide 10: Message Passing (Cont.)
	Slide 11: Message Passing (Cont.)
	Slide 12: Direct Communication
	Slide 13: Indirect Communication
	Slide 14: Indirect Communication
	Slide 15: Indirect Communication
	Slide 16: Synchronization
	Slide 17: Synchronization (Cont.)
	Slide 18: Buffering
	Slide 19: Examples of IPC Systems - POSIX
	Slide 20: Examples of IPC Systems - Mach

