


# **SNS COLLEGE OF ENGINEERING**

Kurumbapalayam(Po), Coimbatore - 641 107 Accredited by NAAC-UGC with 'A' Grade Approved by AICTE, Recognized by UGC & Affiliated to Anna University, Chennai

## **Department of Information Technology**

**Course Name – 23ITT204 & Computer Networks** 

II Year / IV Semester

**UNIT 2 – Transport Layer** 

**Topic 2: Transport layer Protocols** 

**User Datagram Protocol(UDP)** 

**UDP/ Computer Networks /Ms.K.Revathi,AP/IT/ SNSCE** 

5/03/2025





- •Bluetooth technology is being used to successfully integrate many of the critical devices and systems that power hospitals.
- •They provide real examples of how medical device tracking, indoor navigation, space utilization, and other location services are helping healthcare facilities
- optimize their operations and improve the care they provide patients.





## UDP

- UDP is connectionless, unreliable transport protocol. ullet
- It does not add anything to the services of IP except for providing process-to-process ۲ communication instead of host-to-host communication.
- UDP does not implement flow control or reliable/ordered delivery.  $\bullet$
- UDP ensures correctness of the message by the use of a checksum.  $\bullet$
- If a process wants to send a small message and does not require reliability, UDP is used.  $\bullet$





## UDP

### **User Datagram**

- UDP packets, called user datagrams, have a fixed-size header of 8 bytes made of four fields, each ● of 2 bytes (16 bits).
- The first two fields define the source and destination port numbers.
- The third field defines the total length of the user datagram, header plus data.  $\bullet$
- The 16 bits can define a total length of 0 to 65,535 bytes  $\bullet$
- The last field can carry the optional checksum  $\bullet$

**5**/03/2025

UDP/ Computer Networks /Ms.K.Revathi,AP/IT/ SNSCE

edesioning Common Mind & Rusiness Towards Exceller



## 8 to 65,535 bytes 8 bytes Header Data a. UDP user datagram 16 31 Source port number Destination port number Total length Checksum

b. Header format



### **Process-to-Process Communication**

UDP provides process-to-process communication using socket addresses, a combination of IP addresses and port number.

### **Connectionless Services**

- This means that each user datagram sent by UDP is an independent datagram.
- There is no relationship between the different user datagrams even if they are coming from the  $\bullet$ same source process and going to the same destination program.
- The user datagrams are not numbered.
- Only those processes sending short messages, messages less than 65,507 bytes (65,535 minus 8  $\bullet$ bytes for the UDP header and minus 20 bytes for the IP header), can use UDP.

**5**/03/2025





### **Flow Control**

UDP is a very simple protocol. There is no flow control, and hence no window mechanism. The receiver may overflow with incoming messages.

### **Error Control**

There is no error control mechanism in UDP except for the checksum. This means that the sender does not know if a message has been lost or duplicated. When the receiver detects an error through the checksum, the user datagram is silently discarded.

### Checksum

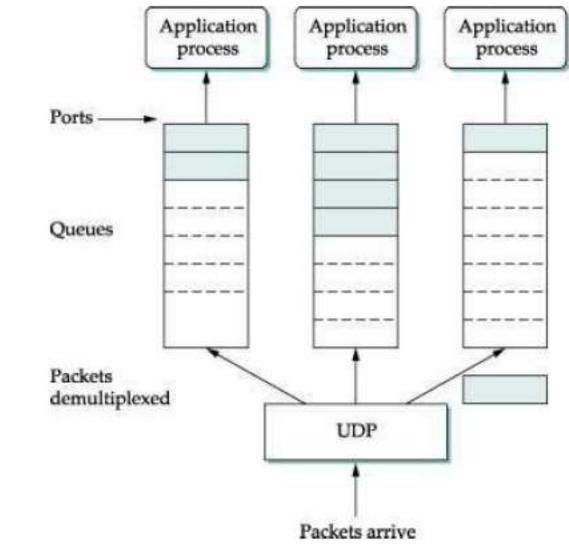
UDP checksum calculation includes three sections: a pseudoheader, the UDP header, and the data coming from the application layer.

### **Congestion Control**

Since UDP is a connectionless protocol, it does not provide congestion control.

5/03/2025






### Queuing

In UDP, queues are associated with ports.

### **Multiplexing and Demultiplexing**

In a host running a TCP/IP protocol suite, there is only one UDP but possibly several processes that may want to use the services of UDP. To handle this situation, UDP multiplexes and demultiplexes



**5**/03/2025

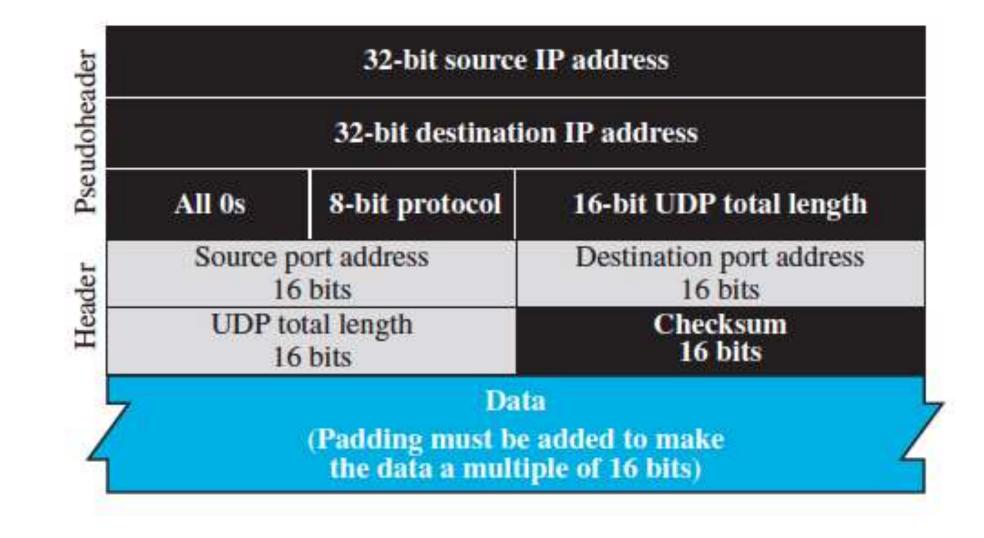
UDP/ Computer Networks /Ms.K.Revathi,AP/IT/ SNSCE

Redesigning Common Mind & Rusines





### **Typical Applications**


- UDP is suitable for a process that requires **simple request-response** communication  $\bullet$
- UDP is suitable for a process with internal flow- and error-control mechanisms.  $\bullet$
- UDP is a suitable transport protocol for multicasting.  $\bullet$
- UDP is used for some route updating protocols such as Routing Information Protocol (RIP)  $\bullet$
- UDP is normally used for interactive real-time applications lacksquare

5/03/2025





### **Packet Format**



**5**/03/2025

UDP/ Computer Networks /Ms.K.Revathi,AP/IT/ SNSCE

Redesigning Common Mind & Business Towards Excellence



Build an Entrepreneurial Mindset Through Our Design



## **THANK YOU**

<mark>5</mark>/03/2025

UDP/ Computer Networks /Ms.K.Revathi,AP/IT/ SNSCE

Redesigning Common Mind & Business



Build an Entrepreneurial Mindset Through Our Design