
SNS COLLEGE OF ENGINEERING
Kurumbapalayam(Po), Coimbatore – 641 107

An Autonomous Institution  
Accredited by NAAC-UGC with ‘A’ Grade

Approved by AICTE, Recognized by UGC & Affiliated to Anna 
University, Chennai

DEPARTMENT OF COMPUTER SCIENCE AND TECHNOLOGY
Course Code and Name : 19TS601 FULL STACK DEVELOPMENT

Unit  2 : REACT
Topic  : Async State Initialization in React.js

1REACT | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS05-03-2025



Async State Initialization 

05-03-2025 2
REACT | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS

• In a synchronous system, you wait for one person to finish serving 
themselves before you start.

• In an asynchronous system, everyone serves themselves at the same 
time without waiting.

• Asynchronous state in React refers to the concept of initializing or 
updating a component's state without blocking other operations. This 
means the state can be set or updated after performing tasks like 
fetching data from an API, reading files, or waiting for user input, all 
while the rest of the application continues to run smoothly.

1. 



Async State Initialization 

05-03-2025 3
REACT | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS

• Asynchronous state initialization in React.js can be managed in 
multiple ways depending on the complexity of the application and the 
tools being used. 

• Here are some common approaches:

• Using useState with an Initializer Function

• Using Redux with Async Thunks

• Server-Side Rendering (SSR) or Static Site Generation (SSG)

• Combining State Libraries with React Query

• Asynchronous Middleware in Redux

1. 



05-03-2025 4
REACT | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS

• React's useState allows to initialize state with a function, which is 
useful for asynchronous logic. 

• However, since useState does not directly support async functions, 
you typically use it alongside useEffect.

• Example:jsx

Using ’useState' with an Initializer Function



05-03-2025 5
REACT | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS

import React, { useState, useEffect } from 'react';

const MyComponent = () => {

const [data, setData] = useState(null);

const [loading, setLoading] = useState(true);

useEffect(() => {

const fetchData = async () => {

const response = await fetch('/api/data');

const result = await response.json();

setData(result);

setLoading(false);

};



05-03-2025 6
REACT | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS

fetchData();

}, []);

if (loading) return <div>Loading...</div>;

return <div>{JSON.stringify(data)}</div>;

};

• Use useEffect to handle side effects like fetching data asynchronously.

• Manage loading and error states explicitly.



Using Redux with Async Thunks

05-03-2025 7
REACT | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS

• For more complex state management needs, Redux Toolkit provides 
createAsyncThunk, which simplifies handling asynchronous state 
initialization.

• Example:js



05-03-2025 8
REACT | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS

import { createAsyncThunk, createSlice } from '@reduxjs/toolkit';

// Define an async thunk

export const fetchInitialData = createAsyncThunk(

'data/fetchInitialData',

async () => {

const response = await fetch('/api/data');

return response.json();

}

);



05-03-2025 9
REACT | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS

// Create a slice

const dataSlice = createSlice({

name: 'data',

initialState: { data: null, status: 'idle', error: null },

reducers: {},

extraReducers: (builder) => {

builder

.addCase(fetchInitialData.pending, (state) => {

state.status = 'loading';

})



05-03-2025 10
REACT | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS

.addCase(fetchInitialData.fulfilled, (state, action) => {

state.status = 'succeeded';

state.data = action.payload;

})

.addCase(fetchInitialData.rejected, (state, action) => {

state.status = 'failed';

state.error = action.error.message;

});

},

});

export default dataSlice.reducer;



05-03-2025 11
REACT | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS

• Use createAsyncThunk for API calls and manage loading/error states 
automatically.

• Dispatch the thunk during app initialization to load the initial state



Server-Side Rendering (SSR) or Static 
Site Generation (SSG)

05-03-2025 12
REACT | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS

• For frameworks like Next.js, asynchronous data fetching can be done 
server-side using functions like getServerSideProps or getStaticProps.

• The fetched data is passed as initial props to the React component.

• Example:js



05-03-2025 13
REACT | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS

export async function getServerSideProps() {

const res = await fetch('https://api.example.com/data');

const data = await res.json();

return { props: { initialData: data } };

}

const MyPage = ({ initialData }) => {

return <div>{JSON.stringify(initialData)}</div>;

};

export default MyPage;

• This approach avoids loading spinners on the client side as data is 
pre-fetched



Combining State Libraries with React 
Query

05-03-2025 14
REACT | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS

• React Query or similar libraries can simplify managing asynchronous 
state by handling caching, deduplication of requests, and background 
updates.

• Example:js



05-03-2025 15
REACT | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS

import { useQuery } from '@tanstack/react-query';

const MyComponent = () => {

const { data, error, isLoading } = useQuery(['fetchData'], async () => {

const res = await fetch('/api/data');

return res.json();

});

if (isLoading) return <div>Loading...</div>;

if (error) return <div>Error: {error.message}</div>;

return <div>{JSON.stringify(data)}</div>;

};

React Query abstracts much of the boilerplate for managing async states 
and retries



Asynchronous Middleware in Redux

05-03-2025 16
REACT | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS

• Sometimes you may need to initialize the entire Redux store 
asynchronously. This can be achieved by dispatching an action after 
creating the store.

• Example: Javascript

• store.dispatch(fetchInitialData());



05-03-2025 17
REACT | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS

Choosing the Right Approach

• Use React's built-in hooks (useState, useEffect) for simple cases.

• Adopt Redux Toolkit for scalable applications requiring centralized 
state management.

• Leverage React Query or similar libraries for efficient server-state 
management.

• Opt for SSR/SSG in frameworks like Next.js for seamless user 
experience without client-side delays.



Event Handling Communicating from 
Child to Parent

05-03-2025 18
REACT | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS

• To enable communication from a child to a parent component in React, you 
can follow these steps using callback functions:

• Steps for Child-to-Parent Communication

• Define State in the Parent Component:
• Create a state in the parent component to store the data received from the child.

• Pass a Callback Function to the Child:
• Define a function in the parent component that updates its state and pass it as a 

prop to the child component.

• Invoke the Callback in the Child Component:
• Call the passed function inside the child component and pass the data as an 

argument.



Example Implementation

05-03-2025 19
REACT | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS

• Parent Component (ParentComponent.js):

import React, { useState } from 'react';

import ChildComponent from './ChildComponent';

const ParentComponent = () => {

const [message, setMessage] = useState('Hello from Parent');

const handleDataFromChild = (data) => {

setMessage(data); // Update state with data from child

};



Example Implementation

05-03-2025 20
REACT | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS

return (

<div>

<h1>Message: {message}</h1>

<ChildComponent sendDataToParent={handleDataFromChild} />

</div>

);

};

export default ParentComponent;



Child Component (ChildComponent.js):

05-03-2025 21
REACT | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS

import React from 'react';

const ChildComponent = ({ sendDataToParent }) => {

const sendData = () => {

const data = 'Hello from Child!';

sendDataToParent(data); // Invoke callback with data

};



05-03-2025 22
REACT | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS

return (

<div>

<button onClick={sendData}>Send Data to Parent</button>

</div>

);

};

export default ChildComponent;



How It Works

05-03-2025 23
REACT | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS

• The parent component defines a state (message) and a callback 
function (handleDataFromChild).

• The callback is passed to the child as sendDataToParent.

• When the button in the child is clicked, sendDataToParent is called 
with a message, updating the parent's state.



Key Points

05-03-2025 24
REACT | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS

• React follows unidirectional data flow (parent-to-child), so to send 
data back, you "lift state up" using callbacks.

• This approach ensures that the parent has control over its state while 
allowing dynamic updates triggered by child components.



05-03-2025 25
REACT | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS



05-03-2025 REACT | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS 26

1.What is async state initilization?



Text Book:
1.Pro MERN Stack, Full Stack Web App Development with 
Mongo, Express, React, and Node, Vasan Subramanian, A Press 
Publisher, 2019.
Reference:
David Flanagan, “Java Script: The Definitive Guide”, O’Reilly 
Media, Inc, 7 th Edition, 2020
2. Matt Frisbie, “Professional JavaScript for Web Developers” 
Wiley Publishing, Inc, 4th Edition, ISBN: 978-1-119-36656-0, 
2019

05-03-2025 REACT | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS 27



05-03-2025 REACT | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS 28


