
SNS COLLEGE OF ENGINEERING
Kurumbapalayam(Po), Coimbatore – 641 107

An Autonomous Institution
Accredited by NAAC-UGC with ‘A’ Grade

Approved by AICTE, Recognized by UGC & Affiliated to Anna
University, Chennai

DEPARTMENT OF COMPUTER SCIENCE AND TECHNOLOGY
Course Code and Name : 19TS601 FULL STACK DEVELOPMENT

Unit 2 : REACT
Topic : Dynamic Composition

1REACT | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS05-03-2025

What is dynamic composition?

• Dynamic composition refers to the process of creating art or graphical
designs where elements are actively arranged to maintain balance
and interest.

• This technique often employs contrast, movement, and varying focal
points to capture attention and convey a message effectively

What is dynamic composition in React.js?

• Composition is a fundamental concept in React that allows
developers to build complex and dynamic user interfaces with ease.

• By breaking down the UI into smaller, reusable components and
composing them together, we can create efficient, scalable, and
maintainable codebases

1.Component Composition

•Combining multiple components dynamically to build a UI.
•Example: Passing different child components as props.

2.Higher-Order Components (HOCs)

•A function that takes a component and returns an enhanced

version.

•Useful for reusability and code abstraction.

3.Render Props Pattern

•Passing a function as a prop to control rendering dynamically.

4.Dynamic Import (Lazy Loading)
•Loading components dynamically using React.lazy().

5.Context API for Dynamic Composition

•Managing shared state across multiple dynamic components.

Basic Dynamic Component Composition

const Card = ({ children }) => {
return (<div className="p-4 border rounded-lg shadow-md">
{children}
</div>);
};
const App = () => {
return (
<div className="flex flex-col gap-4">
<Card>
<h2 className="text-lg font-bold">Title 1</h2> <p>Content for the first
card.</p>
</Card>
<Card>
<h2 className="text-lg font-bold">Title 2</h2> <button className="bg-
blue-500 text-white px-4 py-2 rounded">Click Me</button>
</Card>
</div>);
};
export default App;

• Here, <Card> is dynamically composed with different children
elements

.

Using Props for Dynamic Rendering

const Button = ({ type }) => {
const styles = type === "primary" ? "bg-blue-500" : "bg-gray-500"; return
<button className={
`${styles} text-white px-4 py-2 rounded`}>Click Me</button>; };
const App = () => {
return (<div> <Button type="primary" /> <Button type="secondary" />
</div>);
};
• export default App;
• Here, the <Button> component dynamically changes based on the type prop.

React State

React components has a built-in state object.

The state object is where you store property values that belong to the

component.

When the state object changes, the component re-renders.

• The state object is initialized in the constructor

Specify the state object in the constructor method:

class Car extends React.Component {

constructor(props) {

super(props);

this.state = {brand: "Ford"};

}

render() {

return (

<div>

<h1>My Car</h1>

</div>

);

}

}

Creating the state Object

class Car extends React.Component {
constructor(props) {
super(props);
this.state = {
brand: "Ford",
model: "Mustang",
color: "red",
year: 1964

};
} render() {
return (
<div>
<h1>My Car</h1>

</div>);
}}

Using the state Object

The state object anywhere in the component by using the this.state.propertyname syntax:

import React from 'react';

import ReactDOM from 'react-dom/client';

class Car extends React.Component {

constructor(props) {

super(props);

this.state = {

brand: "Ford",

model: "Mustang",

color: "red",

year: 1964

};

}

render() {
return (
<div>
<h1>My {this.state.brand}</h1>
<p>
It is a {this.state.color}
{this.state.model}
from {this.state.year}.

</p>
</div>

);
}

}

const container = document.getElementById('root');
const root = ReactDOM.createRoot(container);
root.render(<Car />);

Output:
My Ford
It is a red Mustang from 1964.

Changing the state Object

•To change a value in the state object, use

the this.setState() method.

•When a value in the state object changes, the

component will re-render, meaning that the output will

change according to the new value(s).

•Add a button with an onClick event that will change

the color property

:

import React from 'react';
import ReactDOM from 'react-dom/client';
class Car extends React.Component {
constructor(props) {
super(props);
this.state = {
brand: "Ford",
model: "Mustang",
color: "red",
year: 1964

};
}
changeColor = () => {
this.setState({color: "blue"});

}

render() {

return (

<div>

<h1>My {this.state.brand}</h1>

<p>

It is a {this.state.color}

{this.state.model}

from {this.state.year}.

</p>

<button

type="button"

onClick={this.changeColor}

>Change color</button>

</div>

);

}

}

Always use the setState() method to change the state
object, it will ensure that the component knows its
been updated and calls the render() method (and
all the other lifecycle methods).

05-03-2025 REACT | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS 21

1.What is dynamic composition?

Text Book:
1.Pro MERN Stack, Full Stack Web App Development with
Mongo, Express, React, and Node, Vasan Subramanian, A Press
Publisher, 2019.
Reference:
David Flanagan, “Java Script: The Definitive Guide”, O’Reilly
Media, Inc, 7 th Edition, 2020
2. Matt Frisbie, “Professional JavaScript for Web Developers”
Wiley Publishing, Inc, 4th Edition, ISBN: 978-1-119-36656-0,
2019

05-03-2025 REACT | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS 22

05-03-2025 REACT | 19TS601 FULL STACK DEVELOPMENT | S.Susmitha | CST| SNS INSTITUTIONS 23

