
1/X

SNS COLLEGE OF ENGINEERING
Kurumbapalayam (Po), Coimbatore – 641 107

An Autonomous Institution
Accredited by NAAC – UGC with ‘A’ Grade

Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

23CSB101

OBJECT ORIENTED PROGRAMMING

JavaDoc Comments, Constants, Identifiers Garbage

Collection

By
M.Kanchana

Assistant Professor/CSE

* INTRODUCTION/ OOPS /KANCHANA MOORTHY/AP/CSE/SNSCE

INTRODUCTION/ OOPS /KANCHANA MOORTHY/AP/CSE/SNSCE

JavaDoc Comments

* 2/13

Javadoc is a tool which comes with JDK and it is used for generating

Java code documentation in HTML format from Java source code. Java

documentation can be created as part of the source code.

Class Comments

The class comment must be placed after any import statements, directly

before the class definition.

import java.io.*;

/** class comments should be written here */

Public class sample

{

….

}

TYPES OF COMMENTS:

INTRODUCTION/ OOPS /KANCHANA MOORTHY/AP/CSE/SNSCE

JavaDoc Comments

* 3/13

2.Method Comments

The method comments must be placed immediately before the method that

it describes.

INTRODUCTION/ OOPS /KANCHANA MOORTHY/AP/CSE/SNSCE

JavaDoc Comments

* 4/13

3.Field Comments

Field comments are used to document public fields—generally that means

static constants.

/**

* Account number

*/

public static final int acc_no = 101;

INTRODUCTION/ OOPS /KANCHANA MOORTHY/AP/CSE/SNSCE

JavaDoc Comments

* 5/13

INTRODUCTION/ OOPS /KANCHANA MOORTHY/AP/CSE/SNSCE

JavaDoc Comments

* 6/13

INTRODUCTION/ OOPS /KANCHANA MOORTHY/AP/CSE/SNSCE

JavaDoc Comments

* 7/13

javadoc -d docDirectory nameOfPackage

for a single package. Or run

javadoc -d docDirectory nameOfPackage1 nameOfPackage2...

to document multiple packages.

If your files are in the default package, then instead run

javadoc -d docDirectory *.java

If you omit the -d docDirectory option, then the HTML files are

extracted to the currentdirectory.

INTRODUCTION/ OOPS /KANCHANA MOORTHY/AP/CSE/SNSCE

JavaDoc Comments

* 8/13

/**

* This program performs the addition of two numbers.

* It demonstrates the use of Javadoc comments for documentation.

*

* @author ICSE

* @version 1.0

*/

public class Addition {

/** Stores the first number for addition. */

private int num1;

/** Stores the second number for addition. */

private int num2;

INTRODUCTION/ OOPS /KANCHANA MOORTHY/AP/CSE/SNSCE

JavaDoc Comments

* 9/13

/**

* Constructor to initialize the numbers.

*

* @param num1 The first number

* @param num2 The second number

*/

public Addition(int num1, int num2) {

this.num1 = num1;

this.num2 = num2;

}

/**

* Adds the two numbers and returns the sum.

*

* @return The sum of num1 and num2

*/

public int addNumbers() {

return num1 + num2;

}

INTRODUCTION/ OOPS /KANCHANA MOORTHY/AP/CSE/SNSCE

JavaDoc Comments

* 10/13

/**

* Main method to test the addition operation.

*

* @param args Command-line arguments (not used)

*/

public static void main(String[] args) {

Addition addition = new Addition(10, 5); // Creating an object with

numbers 10 and 5

int result = addition.addNumbers(); // Performing addition

// Displaying the result

System.out.println("The sum is: " + result);

}

}

INTRODUCTION/ OOPS /KANCHANA MOORTHY/AP/CSE/SNSCE

JavaDoc Comments

* 11/13

INTRODUCTION/ OOPS /KANCHANA MOORTHY/AP/CSE/SNSCE

JavaDoc Comments

* 12/13

D:\JAVA Programs>javadoc -d docs Addition.java

Loading source file Addition.java...

Constructing Javadoc information...

Standard Doclet version 1.8.0_201

Building tree for all the packages and classes...

Generating docs\Addition.html...

Generating docs\package-frame.html...

Generating docs\package-summary.html...

Generating docs\package-tree.html...

Generating docs\constant-values.html...

Building index for all the packages and classes...

Generating docs\overview-tree.html...

Generating docs\index-all.html...

Generating docs\deprecated-list.html...

Building index for all classes...

Generating docs\allclasses-frame.html...

Generating docs\allclasses-noframe.html...

Generating docs\index.html...

Generating docs\help-doc.html...

INTRODUCTION/ OOPS /KANCHANA MOORTHY/AP/CSE/SNSCE

JavaDoc Comments

* 13/13

INTRODUCTION/ OOPS /KANCHANA MOORTHY/AP/CSE/SNSCE

JavaDoc Comments

* 14/13

INTRODUCTION/ OOPS /KANCHANA MOORTHY/AP/CSE/SNSCE

JavaDoc Comments

* 15/13

INTRODUCTION/ OOPS /KANCHANA MOORTHY/AP/CSE/SNSCE

Java Comments

* 16/13

 Java comments are either explanations of the source code or

descriptions of classes,interfaces, methods, and fields.

 Comments in Java do not show up in the executable program.

Line comment: When you want to make a one line comment type "//" and

follow the two forward slashes with your comment.

Syntax: // text

Block Comment:

To start a block comment type "/*". Everything between the forward slash

and asterisk, even if it's on a different line, will be treated as comment until

the characters "*/" end the comment.

Syntax: /* text */

INTRODUCTION/ OOPS /KANCHANA MOORTHY/AP/CSE/SNSCE

JAVA - CONSTANTS

* 17/13

• A constant is an identifier written in uppercase (convention and not a rule)

that prevents

• its contents form being modified by the program during the execution.

• If an attempt is made to change the value, the compiler will give an error

message.

• In Java, the keyword final is used to declare constants.

• The value of a final variable cannot change after it has been initialized.

final datatype variablename=value;

final float PI=3.14f;

INTRODUCTION/ OOPS /KANCHANA MOORTHY/AP/CSE/SNSCE

JAVA - IDENTIFIERS

* 18/13

• Identifiers are names given to the variables, classes, methods,

objects, labels, package and interface in our program.

• The name we are giving must be meaningful and it may have random

length.

The following rule must be followed while giving a name:

1. The first character must not begin with a number.

2. The identifier is formed with alphabets, number, dollar sign ($)

and underscore (_).

3. It should not be a reserved word.

4. Space is not allowed in between the identifier name.

INTRODUCTION/ OOPS /KANCHANA MOORTHY/AP/CSE/SNSCE

JAVA – RESERVED WORDS (KEYWORDS)

* 19/13

INTRODUCTION/ OOPS /KANCHANA MOORTHY/AP/CSE/SNSCE

GARBAGE COLLECTION

* 20/13

• Since objects are dynamically allocated by using the new operator, you

might be wondering how such objects are destroyed and their memory

released for later reallocation.

• Garbage collection (GC) in Java is a process that automatically removes

unused objects from memory, helping to manage memory efficiently.

• The JVM’s Garbage Collector (GC) looks for objects that no longer have

references.

• Once an object isn’t reachable, it is marked for deletion.

• The GC reclaims memory, preventing memory leaks.

INTRODUCTION/ OOPS /KANCHANA MOORTHY/AP/CSE/SNSCE

GARBAGE COLLECTION

* 21/13

The finalize() method allows an object to clean up resources before it is

destroyed.(Think of it like packing up your things before leaving a house.)

class Example {

// Constructor to create an object

Example() {

System.out.println("Object Created!");

}

// finalize() method

@Override

protected void finalize() {

System.out.println("Object is being

deleted...");

}

public static void main(String[] args) {

Example obj = new Example(); // Creating an object

obj = null; // Making the object eligible for garbage

collection

System.gc(); // Requesting garbage collection

System.out.println("End of program.");

}

}

INTRODUCTION/ OOPS /KANCHANA MOORTHY/AP/CSE/SNSCE

GARBAGE COLLECTION

* 22/13

Output:

Object Created!

End of program.

Object is being deleted...

* INTRODUCTION/ OOPS /KANCHANA MOORTHY/AP/CSE/SNSCE 23/13

THANK YOU

