

SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore – 641 107

An Autonomous Institution

Accredited by NBA-AICTE and Accredited by NAAC – UGC with 'A'Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE NAME : 19EC625 – CYBER FORENSIC AND DATA SECURITY III YEAR / VI SEMESTER

> Unit II- E-MAIL SECURITY & FIREWALLS Topic : Firewall Design in Cyber Forensics

19EC625/ CYBER FORENSIC AND DATA SECURITY /Ms.K.SANGETHA/ECE/SNSCE

INTRODUCTION

What is Firewall Design :

The process of determining how firewalls should be configured and deployed within a network to ensure effective protection and performance.

A **firewall** is a crucial network security device that monitors and controls the incoming and outgoing network traffic based on a set of security rules. It acts as a barrier between a trusted internal network and untrusted external networks (such as the internet), providing a line of defense against unauthorized access, cyber attacks, and potential data breaches.

Principles of Firewall Design

• Security by Design

Ensure security is prioritized from the planning phase through deployment.

Least Privilege

Only allow the minimum necessary access to ensure security.

• Default Deny

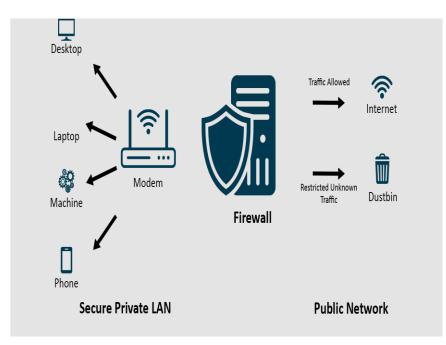
Block all traffic by default, then allow only the required services or applications.

• Redundancy and Failover

Implement high availability to ensure network protection even during failures.

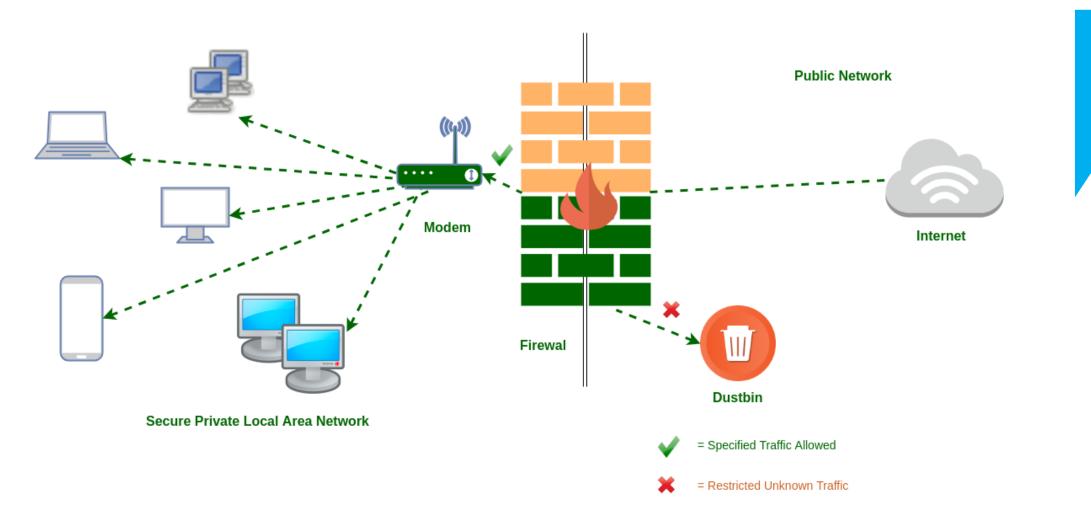
Firewall Architecture

•Perimeter Defense


Deploy firewalls at network entry points to prevent unauthorized access.

Internal Segmentation

Use firewalls to segment internal networks into different security zones (e.g., production, guest, admin).


•Demilitarized Zone (DMZ)

Design a DMZ for public-facing services (e.g., web servers) with strict access control from both internal and external networks.

Types of Firewall Deployment

• Network-based Firewalls :

Deployed at the network perimeter to protect the entire internal network.

• Host-based Firewalls :

Installed directly on devices like servers and workstations to protect individual systems.

• Cloud-based Firewalls :

Firewalls deployed in the cloud environment to protect cloud infrastructure and applications.

Firewall Rule Design

Defining Rules

•Rules should define allowed traffic based on source, destination, port, protocol, and application.

Basic Rule Format

Source IP: Address of the client or service initiating the traffic.
Destination IP: Address of the target system or service.
Ports & Protocols: Specifies which application or service the traffic is targeting.
Action: Allow, Deny, or Log.

Best Practice for Rules

•Explicit Deny: Default deny all and allow only required traffic.
•Granular Rules: Be specific about the IPs, services, and protocols allowed.

Challenges in Firewall Design

• Complexity of Rule Management

As networks grow, managing and auditing firewall rules becomes challenging.

Performance Impact

Firewalls can introduce latency and affect network performance if not properly configured.

Evolving Threats

Firewalls must adapt to new types of attacks (e.g., advanced persistent threats, zero-day vulnerabilities).

Any Query????

Thank you.....

SVD transform/ 19EC513/ IMAGE PROCESSING AND COMPUTER VISION /Ms.K.Sangeetha/ECE/SNSCE