
1/X

SNS COLLEGE OF ENGINEERING
Kurumbapalayam (Po), Coimbatore – 641 107

An Autonomous Institution
Accredited by NAAC – UGC with ‘A’ Grade

Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

23CSB101
OBJECT ORIENTED PROGRAMMING

UNIT II

INHERITANCE, PACKAGES AND INTERFACES

Overloading Methods

By
M.Kanchana

Assistant Professor/CSE

* Unit II/ OOPS /KANCHANA MOORTHY/AP/CSE/SNSCE3/7/2025 1/X

UNIT II/ OOPS /KANCHANA MOORTHY/AP/CSE/SNSCE

Overloading Methods

* 2/133/7/2025 2/13

Method Overloading is a feature in Java that allows a class to have more

than one methods having same name, but with different signatures

(Each method must have different number of parameters or parameters

having different types and orders).

Advantage:

 Method Overloading increases the readability of the program.

 Provides the flexibility to use similar method with different

parameters.

UNIT II/ OOPS /KANCHANA MOORTHY/AP/CSE/SNSCE

Overloading Methods

* 3/133/7/2025 3/13

Three ways to overload a method

1.Number of parameters. (Different number of parameters in argument

list)

For example: This is a valid case of overloading

add(int, int)

add(int, int, int)

2.Data type of parameters. (Difference in data type of parameters)

For example:

add(int, int)

add(int, float)

3. Sequence of Data type of parameters.

For example:

add(int, float)

add(float, int)

UNIT II/ OOPS /KANCHANA MOORTHY/AP/CSE/SNSCE

Overloading Methods

* 4/133/7/2025 4/13

Method Overloading and Type Promotion

Type Promotion: When a data type of smaller size is promoted to the data

type of bigger size than this is called type promotion,

for example: byte data type can be promoted to short, a short data type can

be promoted to int, long, double etc.

.

UNIT II/ OOPS /KANCHANA MOORTHY/AP/CSE/SNSCE

Overloading Methods

* 5/133/7/2025 5/13

Type Promotion in Method Overloading:

One type is promoted to another implicitly if no matching datatype is found.

Type Promotion Table:

The data type on the left side can be promoted to the any of the data type

present in the right side of it.

byte → short → int → long → double short

→ int → long → float → double int → long

→ float → double
float → double
long → float → double
char → int → long → float → double

UNIT II/ OOPS /KANCHANA MOORTHY/AP/CSE/SNSCE

Overloading Methods

* 6/133/7/2025 6/13

UNIT II/ OOPS /KANCHANA MOORTHY/AP/CSE/SNSCE

Overloading Methods

* 7/133/7/2025 7/13

class Overloading

{

void sum(int a, float b)

{

System.out.println(a+b);

}

void sum(int a, int b, int c)

{

System.out.println(a+b+c);

}

public static void main(String args[])

{

OverloadingCalculation1 obj=new OverloadingCalculation1();

obj.sum(20,20);

obj.sum(100,'A');

obj.sum(20,20,20);

}

}

UNIT II/ OOPS /KANCHANA MOORTHY/AP/CSE/SNSCE

Overloading Methods

* 8/133/7/2025 8/13

class Overloading

{

void sum(int a, float b)

{

System.out.println(a+b);

}

void sum(int a, int b, int c)

{

System.out.println(a+b+c);

}

public static void main(String args[])

{

Overloading obj=new Overloading ();

obj.sum(20,20);

obj.sum(100,'A');

obj.sum(20,20,20);

}

}

Output:

40.0

165.0

60

UNIT II/ OOPS /KANCHANA MOORTHY/AP/CSE/SNSCE

Object as Parameters

* 9/133/7/2025 9/13

• Primitive Types: Passed by value, meaning changes to the parameter do

not affect the original variable.

• Objects: The reference to the object is passed by value, but the object itself

can be modified.

Java does not support pass by reference directly. However, when you pass an

object to a method, the reference to the object is passed by value.

This means that while the reference itself is a copy, it still points to the same

object in memory. Therefore, changes made to the object's fields inside the

method will affect the original object.

UNIT II/ OOPS /KANCHANA MOORTHY/AP/CSE/SNSCE

Object as Parameters

* 10/133/7/2025 10/13

class Box {

int value;

}

public class AdditionExample {

public int addPrimitives(int x, int y) {

return x + y;

}

public void addToBox(Box b, int add) {

b.value = b.value + add;

}

public static void main(String[] args) {

AdditionExample example = new AdditionExample();

// Addition using primitives

int a = 10;

int b = 20;

int primitiveSum = example.addPrimitives(a, b);

System.out.println("Sum using primitives: " +

primitiveSum);

// Addition using an object

Box box = new Box();

box.value = 10;

example.addToBox(box, 20);

System.out.println("Box value after addition: " + box.value);

}

}

UNIT II/ OOPS /KANCHANA MOORTHY/AP/CSE/SNSCE

Object as Parameters

* 11/133/7/2025 11/13

OUTPUT:

Sum using primitives: 30

Box value after addition: 30

* INTRODUCTION/ OOPS /KANCHANA MOORTHY/AP/CSE/SNSCE 12/13

THANK YOU

3/7/2025 12/13

