

1
Unit 2/II CST/Analysis & Algorithm/K.Priyanka/AP/CST/SNSCE

COURSE NAME: ANALYSIS OF ALGORITHMS

II YEAR/ IV SEMESTER

UNIT – II

BRUTE FORCE METHOD & DIVIDE AND CONQUER METHOD

Topic

Brute Force Method: Selection sort- Bubble Sort-Sequential Search

Divide and conquer methodology: Quick sort – Merge sort – Binary search

SNS COLLEGE OF ENGINEERING

Coimbatore-107

An Autonomous Institution

Accredited by AICTE and Accredited by NAAC – UGC with ‘A’ Grade

Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

2
Unit 2/II CST/Analysis & Algorithm/K.Priyanka/AP/CST/SNSCE

Brute Force Method

 It is a straightforward technique of problem-solving in which all the possible ways or all the

possible solutions to a given problem are enumerated.

 Many problems are solved in day-to-day life using the brute force strategy, for example,

exploring all the paths to a nearby market to find the minimum shortest path.

 The brute force method is ideal for solving small and simpler problems.

 The brute force approach is inefficient and slow than other methods.

Topic 1: Selection Sort (using Brute Force Approach)

Selection Sort is a comparison-based sorting algorithm.

1. First, we find the smallest element and compare it with the first element in array.

2. If first element is smaller, Swapping is done. Otherwise, comparison is made with second

element and smallest element. Swapping is done, if second element is smaller.

3. This is process is continued with all the elements in the array until entire list is sorted.

Example:

Step 1: When i=0;

Compare; A [0] =60 First Element and A [2] =10 Smallest Element;

First Element 60 is Greater. So, Swap 60 & 10; i++

A [0] A [1] A [2] A[3]

60 20 10 40

Step 2: When i=1;

Compare; A[1] =20 Next Element and A[2] =40 Smallest Element;

Next Element 20 is Smaller. No Swap; i++

A [0] A [1] A [2] A [3]

10 20 60 40

Step 3: When i=2;

Compare; A [2] =60 Nextt Element and A [3] =40 Smallest Element;

3
Unit 2/II CST/Analysis & Algorithm/K.Priyanka/AP/CST/SNSCE

Next Element 60 is Greater. So, Swap 60 & 40; i++

A[0] A[1] A[2] A[3]

10 20 60 40

Final Sorted List:

A[0] A[1] A[2] A[3]

10 20 40 60

Algorithm:

Algorithm SelectionSort(Arr[n])

{

 for (i = 0; i < n - 2; i++) {

 // Assume the current position holds the minimum element

 min = A[i];

 // Iterate through the unsorted portion to find the actual minimum

 for (j = i + 1; j < n-1; j++)

{ min=findmin(A[j])

 if (A[i] > A[min])

{

 temp=A[i]

 A[i]=A[min]

 A[min]=temp

}

}

 // Move minimum element to its correct position

 int temp = arr[i];

 arr[i] = arr[min_idx];

4
Unit 2/II CST/Analysis & Algorithm/K.Priyanka/AP/CST/SNSCE

 arr[min_idx] = temp;

 }

}

Complexity Analysis:

Time Complexity: (Best , Worst & Average Case)

 compare that element with every other Array element taken as:

(n-1) +(n-2) +……. +2+1 =n(n-1)/2 By (Summation Formula):

=(n²-n)/2

Order of Polynomial is n².

Therefore T(n)= O(n²)

Space Complexity: S(n)= O (1), Since no extra memory used is for temporary variables.

Topic 2: Bubble Sort (using Brute Force Approach)

It is the simplest sorting algorithm that works by repeatedly swapping the adjacent elements if they are

in the wrong order.

It compares First element with the consecutive next elements and swaps then and there with smallest

elements until last element.

Again, Compares first element and smaller element until last element. Same process is continued until

entire elements are sorted.

Example: PASS1:

Step 1: When i=0; j=0

A [0] A [1] A [2] A[3] A[4]

70 30 20 40 35

Compare; A [0] =70 & A [1] =30 ; 70 greater; So Swap 70 & 30; j++;

Step 2: When i=0; j=1

5
Unit 2/II CST/Analysis & Algorithm/K.Priyanka/AP/CST/SNSCE

A [0] A [1] A [2] A[3] A[4]

30 70 20 40 35

Compare; A [1] =70 & A [2] =20 ; 70 greater; So Swap 70 & 20; j++;

Step 3: When i=0; j=2

A [0] A [1] A [2] A[3] A[4]

30 20 70 40 35

Compare; A [2] =70 & A [3] =40 ; 70 greater; So Swap 70 & 40; j++

Step 4: When i=0; j=3

A [0] A [1] A [2] A[3] A[4]

30 20 40 70 35

Compare; A [2] =70 & A [3] =35 ; 70 greater; So Swap 70 & 35; j++

Step 4: When i=0; j=4;condition become false.

A [0] A [1] A [2] A[3] A[4]

30 20 40 35 70

j iteration stops since j is not greater than n-1.

PASS:2

Step 1: When i=1; j=0

A [0] A [1] A [2] A[3] A[4]

30 20 40 35 70

Compare; A [0] =30 & A [1] =20; 30 greater; So Swap 30 & 20; j++;

6
Unit 2/II CST/Analysis & Algorithm/K.Priyanka/AP/CST/SNSCE

Step 2: When i=1; j=1

A [0] A [1] A [2] A[3] A[4]

20 30 40 35 70

Compare; A [1] =30 & A [2] =40 ; 30 smaller; No Swap; j++;

Step 2: When i=1; j=2

A [0] A [1] A [2] A[3] A[4]

20 30 40 35 70

Compare; A [2] =40 & A [3] =35 ; 40 Greater; So Swap 35 & 40; j++;

Step 2: When i=1; j=3

A [0] A [1] A [2] A[3] A[4]

20 30 35 40 70

Compare; A [3] =40 & A [4] =70 ; 40 Smaller; No Swap; j++;

Step 4: When i=0; j=4;Condition become false.

j iteration stops; List is Sorted.

Algorithm:

Algorithm BubbleSort(A[0..n-1], n)

{

 for (i = 0; i < n - 1; i++)// move through passes

 {

 flag=0;

 for (j = 0; j < n - i - 1; j++) //Compare 1 element with next element

{

 if (A[j] > A[j + 1])

7
Unit 2/II CST/Analysis & Algorithm/K.Priyanka/AP/CST/SNSCE

{

temp=A[j];

A[j]=A[j+1];

A[j+1]=temp

flag=1

 }

 }

}

if(flag==0)

break;

}

Analysis:

Time Complexity:

1.Maximum Comparisons made: = (n-1) comparisons

1+2+…...(n-1)= Sum of ‘n’ Natural numbers

 =(n(n-1))/2

 = (n2-n)/2

 Degree of Polynomial=n2; Order=f(n)=O(n2)

2.Maximum Swaps made: = (n-1) comparisons

1+2+…...(n-1) = Sum of ‘n’ Natural numbers

 =(n(n-1))/2

 = (n2-n)/2

Degree of Polynomial=n2; Order=f(n)=O(n2)

8
Unit 2/II CST/Analysis & Algorithm/K.Priyanka/AP/CST/SNSCE

Bubble Sort

Time Complexity

Space Complexity
Best Case

Avg.

Case

Worst

Case

O(n) O(n²) O(n²) O(1)

Space Complexity:

Bubble Sort is an in-place sorting algorithm, meaning it does not require any additional memory that

grows with the size of the input list (apart from a small, constant amount of space for variables like the

loop counters or temporary values for swapping). Therefore, its space complexity is O (1), which means

it only uses a constant amount of space.

 Topic 3-Sequential Search (or) Linear Search

 (using Brute Force Approach)

This uses Brute Force Method that search the Key Element(required) by comparing each successive

element with the Key element.

If found; Search is Success and index of Key element is returned. Otherwise, Key element is not present.

Example:

A [0] A [1] A [2] A[3] A[4]

30 20 40 35 70

Key=40;

1. Search Key with index 0; Element does not match key. So, increment index

2. Search Key with index 1; Element does not match key. So, increment index

3. Search Key with index 2; Element matches key. So, return index=2.

Algorithm:

Algorithm seqsearch(A[0…n-1], n,Key)

{

 for (int i = 0; i < n; i++)

 if (A[i] == Key)

 return i;

 return -1;

9
Unit 2/II CST/Analysis & Algorithm/K.Priyanka/AP/CST/SNSCE

}

Analysis:

Time Complexity:

 Best Case: In the best case, the key might be present at the first index. So the best case

complexity is O(1)

 Worst Case: In the worst case, the key might be present at the last index. So, the worst-case

complexity is O(n) where N is the size of the list.

 Average Case: Algorithm runs half of the element (n/2). Order=Degree of Polynomial=O(n).

Space Complexity:

 O(1) as except for the variable to iterate through the list, no other variable is used. (Iterative

Version)

Divide and Conquer Approach

Divide and Conquer Algorithm involves breaking a larger problem into smaller subproblems, solving

them independently, and then combining their solutions to solve the original problem. The basic idea is

to recursively divide the problem into smaller subproblems until they become simple enough to be

solved directly. Once the solutions to the subproblems are obtained, they are then combined to produce

the overall solution.

The main steps are:

Divide: Break the problem into smaller subproblems.

Conquer: Solve the subproblems recursively.

Combine: Merge or combine the solutions of the subproblems to obtain the solution to the original

problem.

Topic 4: Quick Sort

(using Divide & Conquer Approach)

QuickSort is a sorting algorithm based on the Divide and Conquer that picks an element as a pivot and

partitions the given array around the picked pivot by placing the pivot in its correct position in the sorted

array.

There are mainly three steps in the algorithm:

10
Unit 2/II CST/Analysis & Algorithm/K.Priyanka/AP/CST/SNSCE

1. Choose a Pivot: Select an element from the array as the pivot. The choice of pivot can vary

(e.g., first element, last element, random element, or median).

2. Partition the Array: Rearrange the array around the pivot. After partitioning, all elements

smaller than the pivot will be on its left, and all elements greater than the pivot will be on its

right. The pivot is then in its correct position, and we obtain the index of the pivot.

3. Recursively Call: Recursively apply the same process to the two partitioned sub-arrays (left

and right of the pivot).

4. Base Case: The recursion stops when there is only one element left in the sub-array, as a single

element is already sorted.

Example:

Step 1:

Pivot=10; i= First Element; j=Last Element;

Since Pivot=First Element; increment i and decrement j.

Pivot

.

 i j

 Step 2:

 i=16 & j=5; Check i(16)>Pivot (10) ;True ;

 Check j(5) <Pivot(10); True;

 Swap i&j

 Increment i & decrement j;

Step 3:

i=8 & j=9; Check i(8)>Pivot (10) ;False;

 No Swap;

 Increment i;

10 16 8 12 15 6 3 9 5 ∞

11
Unit 2/II CST/Analysis & Algorithm/K.Priyanka/AP/CST/SNSCE

 Pivot

 i j

Step 4:

 i=12& j=9; Check i(12)>Pivot(10) ;True ;

 Check j(9)<Pivot(10); True;

 Swap i&j

 Increment i & decrement j;

Pivot

 i j

Step 5:

 i=15& j=3; Check i(15)>Pivot(10) ;True ;

 Check j(3)<Pivot(10); True;

 Swap i&j

 Increment i & decrement j;

 Pivot

 i j

Step 5:

 i=6& j=6;

Check i(6)>Pivot(10) ;False ;

10 5 8 12 15 6 3 9 16 ∞

10 5 8 12 15 6 3 9 16 ∞

10 5 8 9 15 6 3 12 16 ∞

12
Unit 2/II CST/Analysis & Algorithm/K.Priyanka/AP/CST/SNSCE

 Check j(6)<Pivot(10); True; j Crossed i.

 So Swap Pivot & j;

 Pivot

 ij

Final List:

 Elements left to Pivot are smaller Elements right to pivot are greater

 Pivot

Recursively Apply Quick Sort:

We now apply quick sort recursively to the two subarrays:

 Left subarray: [6,5,8,9,3]

 Right subarray: [15,12,16]

Final Sorted Array:

Applying recursive calls, the array is fully sorted:

Algorithm:

i).Algorithm Quicksort(A[0..n-1],low,high)

{

if(low<high)

Pivot=Partition(A[low..high])//Pivot is in mid position now

Quicksort(A[low..Pivot-1]

10 5 8 9 3 6 15 12 16 ∞

6 5 8 9 3 10 15 12 16 ∞

3 5 6 8 9 10 12 15 16 ∞

13
Unit 2/II CST/Analysis & Algorithm/K.Priyanka/AP/CST/SNSCE

Quicksort(A[Pivot +1…high])

}

ii).Algorithm Partition(A[low..high])

{

Pivot=A[low]

i=low

j=high

while(i<=j)do

{

while(A[i]<=Pivot)do

i=i+1

while(A[j]<=Pivot)do

j=j-1

if(i<=j)

swap(A[i],A[j])

}

swap(A[low],A[j]) //When j crosses i, swap A[low] and A[j]

return j

}

Analysis:

Time Complexity T(n) :

Best Case & Average Case Time Complexity: O (n log n)

 In the best case, Quick Sort performs well when the pivot divides the array into two

equal parts in every step of the recursion. This ensures a balanced partitioning.

 Partitioning process takes linear time (O(n)), and there are approximately log n levels

of recursion. So, the time complexity is O (n log n).

Worst Case Time Complexity: O(n²)

14
Unit 2/II CST/Analysis & Algorithm/K.Priyanka/AP/CST/SNSCE

 This can happen if the pivot chosen is always the smallest or largest element.

 T(n)=n+(n-1) +(n-2) +…. +2+1

By Sum of ‘n’ natural nos,We get

 =(n(n+1))/2

 =(n²+n)/2

Order=Higher degree of Polynomial= O(n²).

By Recurrence Relation:

 Time to Sort Right Sub Array

 T(n)= T(n/2) + T(n/2) + n Time to Partition the array

 Time to Sort Left Sub Array

Step 2: Consider the above Recurrence Relation;

T(n)= T(n/2) + T(n/2) + n

T(n)=2* T(n/2) + n 1

Applying Equation 1 in general recurrence relation: T(n)=a* T(n/b) + f(n)

Now, a=2; b=2;

f(n)=n= θ(n^d)= θ(n^1)

Therefore d=1;

Finding a=(b^d):

2=(2^1)

2=2(Both are equal)

Step 3: It can be Solved using Master Theorem or Substitution Method. Here we use Master

Theorem.

If f(n) ∈ θ (n^d), then,

1.T(n)= θ (n^d), if(a<(b^d))

2. T(n)= θ((n^d) * log n), if(a=(b^d))

3. T(n)= θ ((n^ logb(a)), if(a>(b^d))

15
Unit 2/II CST/Analysis & Algorithm/K.Priyanka/AP/CST/SNSCE

Since a=(b^d); Apply in case 2; We get,

T(n)= θ((n^d) * log n) [since d=1]

 = θ((n^1) * log n) = θ ((n log n)

Space Complexity:

Best and Average Case

 In the best and average cases, where the array is divided into two relatively equal

parts, the recursion depth will be log n (for the pivot and the partitioning process), so

the space complexity is O (log n).

 Worst Case:

 In the worst case, where the array is highly unbalanced (for example, if the pivot is

always the smallest or largest element), resulting in a space complexity of O(n).

Additional Information

Choice of Pivot

There are many different choices for picking pivots.

 Always pick the first (or last) element as a pivot. The problem with this approach is it ends up

in the worst case when array is already sorted.

 Pick a random element as a pivot. This is a preferred approach because it does not have a pattern

for which the worst case happens.

 Pick the median element is pivot. This is an ideal approach in terms of time complexity as we

can find median in linear time and the partition function will always divide the input array into

two halves.

Partition Algorithm

 The key process in quickSort is a partition (). There are three common algorithms to partition.

All these algorithms have O(n) time complexity.

 1.Naive Partition: Here we create copy of the array. First put all smaller elements and then all

 greater. Finally, we copy the temporary array back to original array. This requires O(n) extra

 space.

2.Lomuto Partition: This is a simple algorithm; we keep track of index of smaller elements

and keep swapping.

16
Unit 2/II CST/Analysis & Algorithm/K.Priyanka/AP/CST/SNSCE

3.Hoare’s Partition: This is the fastest of all. Here we traverse array from both sides and keep

swapping greater element on left with smaller on right while the array is not partitioned.

Topic 5: Merge Sort

(using Divide & Conquer Approach)

Merge Sort works by recursively splitting the array into two halves, sorting each half, and then merging

the sorted halves back together.

Steps:

1. Split the Array: Keep dividing the array into halves until each subarray has only one

element.

2. Merge: Start merging the subarrays back together in sorted order.

Example: Initial Array: [70, 50, 10, 60, 20]; Find Mid Element=10;

 Left Array Right Array

 Split Split

 Split Split

Sort & Merge Sort & Merge

 Sort & Merge

70 50 10 60 20

70 50 10 60 20

70 50 10

50 10
70

60 20

20 60 50 70 10

10 50 70

10 20 50 60 70

17
Unit 2/II CST/Analysis & Algorithm/K.Priyanka/AP/CST/SNSCE

Step 1: Split into Left & Right Sub Array: Left: [70, 50, 10] & Right: [60, 20] until array is splitted

into individual element.

Step 2: Sort &Merge: all individual elements is sorted and merged till entire element is Sorted

Final Sorted Array: [10, 20, 50, 60, 70]

Algorithm:

i). Algorithm Mergesort(A[0…n-1],low,high)

{

if(low<high)

{

mid=(low+high)/2

Mergesort(A,low,mid)

Mergesort(A, mid+1,high)

Combine(A,low,mid,high)

}

}

ii). Algorithm Combine (A [0…n-1],low,mid,high)

{

k=low

i=low

j=mid+1

while(i<=mid)

{

if(A[i]<=A[j])

{

Temp[k]=A[i]

i++

k++

}

} Temp[k]=A[j]

while(j<=high)

{

if(A[j]>=A[i])

{

Temp[k]=A[j]

j++

18
Unit 2/II CST/Analysis & Algorithm/K.Priyanka/AP/CST/SNSCE

k++

}

} Temp[k]=A[j]

}

Analysis:

Time Complexity:

1.Best Case:

 Even in the best case (already sorted input), Merge Sort still divides the array and merges it

back in O (n log n) time.

2.Average Case:

 On average, Merge Sort divides the array into two halves and merges them back, resulting in

O (n log n) time complexity.

3.Worst Case:

 Even in the worst case (when the input is reversed), Merge Sort divides the array and merges

them back in O (n log n) time.

By Recurrence Relation:

Step1: Find Recurrence Relation:

 Time to Sort Right Sub Array

 T(n)= T(n/2) + T(n/2) + n Time to Partition the array

 Time to Sort Left Sub Array

Step 2: Consider the above Recurrence Relation;

T(n)= T(n/2) + T(n/2) + n

T(n)=2* T(n/2) + n 1

Applying Equation 1 in general recurrence relation: T(n)=a* T(n/b) + f(n)

Now, a=2; b=2;

f(n)=n= θ(n^d) = θ(n^1)

Therefore d=1;

Finding a=(b^d):

2= (2^1)

2=2(Both are equal)

19
Unit 2/II CST/Analysis & Algorithm/K.Priyanka/AP/CST/SNSCE

Step 3: It can be Solved using Master Theorem or Substitution Method. Here we use Master

Theorem.

Since a=(b^d); Apply Case 2 in Master Theorem; We get,

T(n)= θ((n^d) * log n) [since d=1]

 = θ((n^1) * log n) = θ ((n log n)

Therefore T(n)= θ ((n log n)

Space Complexity:

 O(n) because of the additional space required to store the temporary subarrays during

the merging process.

Topic 6: Binary Search

(using Divide & Conquer Approach)

 Binary search is an efficient algorithm for finding an item from a list or array. Elements in

array must be sorted before searching is done.

 Elements to be searched is ‘Key’. Low is First element. High is Last element.

 Find Mid Element= (low + high)/2. Key Element and Mid Element are Compared.

 If Key element is less than Mid Element, Search is done in Left Sublist and If Key element is

greater than Mid Element, Search is done in Right Sublist. The Process is repeated until Key

element is Matched.

Example: low mid high

10 20 30 40 50 60 70

Key Element=60;

Step 1:

Find Middle Element:

mid= (low +high)/2

 = (10+70)/2

 =80/2=40; mid=40

Step 2:

Check A[mid]=Key; 40<60; Key is not mid element;

Step 3:

Key is Greater than mid. So, Search elements after mid (Right Sublist).

 low mid high

50 60 70

20
Unit 2/II CST/Analysis & Algorithm/K.Priyanka/AP/CST/SNSCE

Step 4:

Compare [mid]=Key; Key (60) is matched with mid.

Algorithm :

Algorithm BinSearch(A[0..n-1], Key)

{

low=0

high=n-1

while(low<high)

{

mid=(low+high)/2

if(key==A[mid])

return mid

else

if(key<A[mid])

BinSearch(A[], Key,low,mid-1)//Search Left Sublist

Else

BinSearch(A[], Key,mid+1,high)//Search Right Sublist

}

}

Analysis:

Time Complexity T(n):

1.Best Case:

 O(1); When Middle Element is key.

2.Average Case and Worst Case:

 O (log n) ; When Key Element is present at one of the end or not present.

By Recurrence Relation:

Step1: Find Recurrence Relation:

 Constant Time to Compare element

 T(n)= T(n/2) + O(1)

 Time to divide the sublist

Binary Search divide the problem into two halves and process only one half in each step.

Step 2: Apply Master Theorem:

T(n)= T(n/2) + O(1)

T(n)=1* T(n/2) +O(n^0) [since (n^0)=1] 1

21
Unit 2/II CST/Analysis & Algorithm/K.Priyanka/AP/CST/SNSCE

Applying Equation 1 in general recurrence relation: T(n)=a* T(n/b) + f(n)

Now, a=1; b=2;

 f(n)=(n^0)=(n^d)

 [therefore d=0];

Finding a=(b^d);

1=(2^0) (since 2^0=1)

1=1;(Both are equal)

Step 3: It can be Solved using Master Theorem or Substitution Method. Here we use Master

Theorem.

Since a=(b^d); Apply Case 2 in Master Theorem; We get,

T(n)= θ((n^0) * log n) [since d=0]

 = θ((1) * log n) = θ (log n)

Therefore T(n)= θ (log n)

Space Complexity S(n):

O(1) — Binary search is an in-place algorithm that does not require additional memory beyond the

input array. So It is considered Constant.

 Quick Review

Analysis of Brute Force Algorithms

Algorithm Time Complexity Space Complexity

 Best

Case

Average

Case

Worst

Case

Selection Sort O(n²) O(n²) O(n²) O(1)

Bubble Sort O(n) O(n²) O(n²) O(1)

Linear Search O(1) O(n) O(n) O(1)

22
Unit 2/II CST/Analysis & Algorithm/K.Priyanka/AP/CST/SNSCE

Analysis of Divide & Conquer Algorithms

Algorithm Time Complexity Space Complexity

 Best

Case

Average

Case

Worst

Case

Merge Sort O(n log n)
O(n log

n)

O(n log

n)
O(n)

Quick Sort O(n log n)
O(n log

n)
O(n^2) O(log n)

Binary Search O(log n) O(log n)
O(log

n)
O(1)

	Recursively Apply Quick Sort:

