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Brute Force Method 

 It is a straightforward technique of problem-solving in which all the possible ways or all the 

possible solutions to a given problem are enumerated. 

 Many problems are solved in day-to-day life using the brute force strategy, for example, 

exploring all the paths to a nearby market to find the minimum shortest path. 

 The brute force method is ideal for solving small and simpler problems. 

 The brute force approach is inefficient and slow than other methods. 

Topic 1: Selection Sort (using Brute Force Approach) 

Selection Sort is a comparison-based sorting algorithm.  

1. First, we find the smallest element and compare it with the first element in array.  

2. If first element is smaller, Swapping is done. Otherwise, comparison is made with second 

element and smallest element. Swapping is done, if second element is smaller. 

3. This is process is continued with all the elements in the array until entire list is sorted. 

Example:   

Step 1: When i=0;  

Compare;  A [0] =60 First Element and A [2] =10 Smallest Element;  

First Element 60 is Greater. So, Swap 60 & 10; i++ 

A [0] A [1] A [2] A[3] 

60 20 10 40 

 

Step 2: When i=1;  

Compare;  A[1] =20 Next Element  and A[2] =40 Smallest Element;  

Next Element 20 is Smaller. No Swap; i++ 

A [0] A [1] A [2] A [3] 

10 20 60 40 

 

Step 3: When i=2;  

Compare;  A [2] =60 Nextt Element and A [3] =40 Smallest Element;  
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Next Element 60 is Greater. So, Swap 60 & 40; i++ 

A[0] A[1] A[2] A[3] 

10 20 60 40 

 

Final Sorted List: 

A[0] A[1] A[2] A[3] 

10 20 40 60 

 

Algorithm: 

Algorithm SelectionSort(Arr[n])  

{ 

    for ( i = 0; i < n - 2; i++) { 

       // Assume the current position holds the minimum element 

       min = A[i]; 

    // Iterate through the unsorted portion to find the actual minimum 

        for ( j = i + 1; j < n-1; j++)  

{ min=findmin(A[j]) 

            if (A[i] > A[min])  

{ 

 temp=A[i] 

 A[i]=A[min] 

 A[min]=temp 

} 

} 

 // Move minimum element to its correct position 

        int temp = arr[i]; 

        arr[i] = arr[min_idx]; 
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        arr[min_idx] = temp; 

    } 

} 

Complexity Analysis: 

Time Complexity: ( Best , Worst & Average Case) 

 compare that element with every other Array element taken as: 

(n-1) +(n-2) +……. +2+1 =n(n-1)/2 By (Summation Formula): 

=(n²-n)/2 

Order of Polynomial is n².  

Therefore T(n)= O(n²) 

Space Complexity: S(n)= O (1), Since no extra memory used is for temporary variables. 

Topic 2: Bubble Sort (using Brute Force Approach) 

It is the simplest sorting algorithm that works by repeatedly swapping the adjacent elements if they are 

in the wrong order.  

It compares First element with the consecutive next elements and swaps then and there with smallest 

elements until last element.  

Again, Compares first element and smaller element until last element. Same process is continued until 

entire elements are sorted.  

Example:     PASS1: 

Step 1: When i=0; j=0 

A [0] A [1] A [2] A[3] A[4] 

70 30 20 40 35 

 

Compare;  A [0] =70  & A [1] =30 ; 70 greater; So Swap 70 & 30; j++; 

 

 

Step 2: When i=0; j=1 
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A [0] A [1] A [2] A[3] A[4] 

30 70 20 40 35 

 

Compare; A [1] =70  & A [2] =20 ; 70 greater; So Swap 70 & 20; j++; 

 

Step 3: When i=0; j=2 

A [0] A [1] A [2] A[3] A[4] 

30 20 70 40 35 

 

Compare; A [2] =70  & A [3] =40 ; 70 greater; So Swap 70 & 40; j++ 

 

Step 4: When i=0; j=3 

A [0] A [1] A [2] A[3] A[4] 

30 20 40 70 35 

 

Compare; A [2] =70  & A [3] =35 ; 70 greater; So Swap 70 & 35; j++ 

Step 4: When i=0; j=4;condition become false. 

A [0] A [1] A [2] A[3] A[4] 

30 20 40 35 70 

 

j iteration stops since j is not greater than n-1. 

PASS:2 

Step 1: When i=1; j=0 

A [0] A [1] A [2] A[3] A[4] 

30 20 40 35 70 

 

 

Compare;  A [0] =30 & A [1] =20; 30 greater; So Swap 30 & 20; j++; 
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Step 2: When i=1; j=1 

A [0] A [1] A [2] A[3] A[4] 

20 30 40 35 70 

 

Compare;  A [1] =30  & A [2] =40 ; 30 smaller; No Swap; j++; 

Step 2: When i=1; j=2 

A [0] A [1] A [2] A[3] A[4] 

20 30 40 35 70 

 

Compare;  A [2] =40  & A [3] =35 ; 40 Greater; So Swap 35 & 40; j++; 

Step 2: When i=1; j=3 

 

A [0] A [1] A [2] A[3] A[4] 

20 30 35 40 70 

 

Compare;  A [3] =40  & A [4] =70 ; 40 Smaller; No Swap; j++; 

Step 4: When i=0; j=4;Condition  become false. 

j iteration stops; List is Sorted. 

Algorithm: 

Algorithm BubbleSort(A[0..n-1], n) 

{ 

    for (i = 0; i < n - 1; i++)// move through passes 

 { 

     flag=0; 

         for (j = 0; j < n - i - 1; j++) //Compare 1 element with next element 

{ 

            if (A[j] > A[j + 1])  
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{ 

temp=A[j]; 

A[j]=A[j+1]; 

A[j+1]=temp 

flag=1 

            } 

 } 

} 

if(flag==0) 

break; 

} 

Analysis: 

Time Complexity: 

1.Maximum Comparisons made: = (n-1) comparisons 

1+2+…...(n-1)= Sum of ‘n’ Natural numbers 

           =(n(n-1))/2 

          = (n2-n)/2 

 Degree of Polynomial=n2; Order=f(n)=O(n2) 

2.Maximum Swaps made: = (n-1) comparisons 

1+2+…...(n-1) = Sum of ‘n’ Natural numbers 

           =(n(n-1))/2 

          = (n2-n)/2 

Degree of Polynomial=n2; Order=f(n)=O(n2) 
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Bubble Sort 

Time Complexity 

Space Complexity 
Best Case 

Avg. 

Case 

Worst 

Case 

O(n) O(n²) O(n²) O(1) 

 

Space Complexity: 

Bubble Sort is an in-place sorting algorithm, meaning it does not require any additional memory that 

grows with the size of the input list (apart from a small, constant amount of space for variables like the 

loop counters or temporary values for swapping). Therefore, its space complexity is O (1), which means 

it only uses a constant amount of space. 

    Topic 3-Sequential Search (or) Linear Search 

   (using Brute Force Approach) 

This uses Brute Force Method that search the Key Element(required) by comparing each successive 

element with the Key element. 

If found; Search is Success and index of Key element is returned. Otherwise, Key element is not present. 

Example: 

A [0] A [1] A [2] A[3] A[4] 

30 20 40 35 70 

Key=40; 

1. Search Key with index 0; Element does not match key. So, increment index 

2. Search Key with index 1; Element does not match key. So, increment index 

3. Search Key with index 2; Element matches key. So, return index=2. 

Algorithm: 

Algorithm seqsearch(A[0…n-1], n,Key) 

{ 

    for (int i = 0; i < n; i++) 

        if (A[i] == Key) 

            return i; 

    return -1; 
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} 

Analysis: 

Time Complexity: 

 Best Case: In the best case, the key might be present at the first index. So the best case 

complexity is O(1) 

 Worst Case: In the worst case, the key might be present at the last index. So, the worst-case 

complexity is O(n) where N is the size of the list. 

 Average Case: Algorithm runs half of the element (n/2). Order=Degree of Polynomial=O(n). 

Space Complexity:  

 O(1) as except for the variable to iterate through the list, no other variable is used. (Iterative 

Version) 

Divide and Conquer Approach 

Divide and Conquer Algorithm involves breaking a larger problem into smaller subproblems, solving 

them independently, and then combining their solutions to solve the original problem. The basic idea is 

to recursively divide the problem into smaller subproblems until they become simple enough to be 

solved directly. Once the solutions to the subproblems are obtained, they are then combined to produce 

the overall solution. 

The main steps are: 

Divide: Break the problem into smaller subproblems. 

Conquer: Solve the subproblems recursively. 

Combine: Merge or combine the solutions of the subproblems to obtain the solution to the original 

problem. 

Topic 4: Quick Sort  

(using Divide & Conquer Approach) 

QuickSort is a sorting algorithm based on the Divide and Conquer that picks an element as a pivot and 

partitions the given array around the picked pivot by placing the pivot in its correct position in the sorted 

array. 

There are mainly three steps in the algorithm: 
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1. Choose a Pivot: Select an element from the array as the pivot. The choice of pivot can vary 

(e.g., first element, last element, random element, or median). 

2. Partition the Array: Rearrange the array around the pivot. After partitioning, all elements 

smaller than the pivot will be on its left, and all elements greater than the pivot will be on its 

right. The pivot is then in its correct position, and we obtain the index of the pivot. 

3. Recursively Call: Recursively apply the same process to the two partitioned sub-arrays (left 

and right of the pivot). 

4. Base Case: The recursion stops when there is only one element left in the sub-array, as a single 

element is already sorted. 

Example: 

Step 1: 

Pivot=10; i= First Element; j=Last Element; 

Since Pivot=First Element; increment i and decrement j. 

Pivot 

. 

       i             j  

  Step 2: 

   i=16 & j=5; Check i(16)>Pivot (10) ;True ; 

                    Check j(5) <Pivot(10); True; 

        Swap i&j 

         Increment i & decrement j; 

Step 3: 

i=8 & j=9; Check i(8)>Pivot (10) ;False; 

                     No Swap; 

         Increment i; 

 

 

10 16 8 12 15     6    3 9 5 ∞ 
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            Pivot 

 

             i             j  

Step 4:            

    i=12& j=9; Check i(12)>Pivot(10) ;True ; 

                    Check j(9)<Pivot(10); True; 

                     Swap i&j 

        Increment  i & decrement j; 

 

Pivot 

    

    i               j  

Step 5:            

    i=15& j=3; Check i(15)>Pivot(10) ;True ; 

                    Check j(3)<Pivot(10); True; 

                     Swap i&j 

        Increment  i & decrement j; 

 Pivot 

 

               i    j   

Step 5:            

    i=6& j=6;    

Check i(6)>Pivot(10) ;False ; 

10 5 8 12 15 6  3 9 16 ∞ 

10 5 8 12 15 6  3 9 16 ∞ 

10 5 8 9 15 6 3 12 16 ∞ 
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              Check j(6)<Pivot(10); True; j Crossed i. 

 So Swap Pivot & j; 

 

 Pivot 

 

       ij 

Final List:        

 Elements left to Pivot are smaller   Elements right to pivot are greater  

 

               Pivot 

Recursively Apply Quick Sort: 

We now apply quick sort recursively to the two subarrays: 

 Left subarray: [6,5,8,9,3] 

 Right subarray: [15,12,16] 

Final Sorted Array: 

Applying recursive calls, the array is fully sorted: 

 

Algorithm: 

i).Algorithm Quicksort(A[0..n-1],low,high) 

{ 

if(low<high) 

Pivot=Partition(A[low..high])//Pivot is in mid position now 

Quicksort(A[low..Pivot-1] 

10 5 8 9 3 6 15 12 16 ∞ 

6 5 8 9 3 10 15 12 16 ∞ 

3 5 6 8 9 10 12 15 16 ∞ 
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Quicksort(A[Pivot +1…high]) 

} 

ii).Algorithm Partition(A[low..high]) 

{ 

Pivot=A[low] 

i=low 

j=high 

while(i<=j)do 

{ 

while(A[i]<=Pivot)do 

i=i+1 

while(A[j]<=Pivot)do 

j=j-1 

if(i<=j) 

swap(A[i],A[j]) 

} 

swap(A[low],A[j])  //When j crosses i, swap A[low] and A[j] 

return j 

} 

Analysis: 

Time Complexity T(n) : 

Best Case & Average Case Time Complexity: O (n log n) 

 In the best case, Quick Sort performs well when the pivot divides the array into two 

equal parts in every step of the recursion. This ensures a balanced partitioning. 

 Partitioning process takes linear time (O(n)), and there are approximately log n levels 

of recursion. So, the time complexity is O (n log n). 

Worst Case Time Complexity: O(n²) 
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 This can happen if the pivot chosen is always the smallest or largest element. 

 T(n)=n+(n-1) +(n-2) +…. +2+1 

By Sum of ‘n’ natural nos,We get 

 =(n(n+1))/2 

 =(n²+n)/2 

Order=Higher degree of Polynomial= O(n²). 

By Recurrence Relation: 

   Time to Sort Right Sub Array 

   T(n)= T(n/2) + T(n/2) + n        Time to Partition the array 

   Time to Sort Left Sub Array 

Step 2: Consider the above Recurrence Relation; 

T(n)= T(n/2) + T(n/2) + n 

T(n)=2* T(n/2) + n  1 

Applying Equation 1 in general recurrence relation: T(n)=a* T(n/b) + f(n) 

Now, a=2; b=2;  

f(n)=n= θ(n^d)= θ(n^1) 

Therefore d=1; 

Finding a=(b^d): 

2=(2^1) 

2=2(Both are equal) 

Step 3: It can be Solved using Master Theorem or Substitution Method. Here we use Master 

Theorem. 

If f(n) ∈ θ (n^d), then, 

1.T(n)= θ (n^d), if(a<(b^d)) 

2. T(n)= θ((n^d) * log n), if(a=(b^d)) 

3. T(n)= θ ((n^ logb(a)), if(a>(b^d)) 
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Since a=(b^d); Apply in case 2; We get, 

T(n)= θ((n^d) * log n) [since d=1] 

        = θ((n^1) * log n) = θ ((n log n) 

 

Space Complexity: 

Best and Average Case 

 In the best and average cases, where the array is divided into two relatively equal 

parts, the recursion depth will be log n (for the pivot and the partitioning process), so 

the space complexity is O (log n). 

 Worst Case: 

 In the worst case, where the array is highly unbalanced (for example, if the pivot is 

always the smallest or largest element), resulting in a space complexity of O(n). 

 

Additional Information 

Choice of Pivot 

There are many different choices for picking pivots. 

 Always pick the first (or last) element as a pivot. The problem with this approach is it ends up 

in the worst case when array is already sorted. 

 Pick a random element as a pivot. This is a preferred approach because it does not have a pattern 

for which the worst case happens. 

 Pick the median element is pivot. This is an ideal approach in terms of time complexity as we 

can find median in linear time and the partition function will always divide the input array into 

two halves.  

Partition Algorithm 

 The key process in quickSort is a partition (). There are three common algorithms to partition. 

All these algorithms have O(n) time complexity. 

 1.Naive Partition: Here we create copy of the array. First put all smaller elements and then all 

 greater. Finally, we copy the temporary array back to original array. This requires O(n) extra 

 space. 

2.Lomuto Partition: This is a simple algorithm; we keep track of index of smaller elements 

and keep swapping. 
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3.Hoare’s Partition: This is the fastest of all. Here we traverse array from both sides and keep 

swapping greater element on left with smaller on right while the array is not partitioned.  

 

Topic 5: Merge Sort  

(using Divide & Conquer Approach) 

Merge Sort works by recursively splitting the array into two halves, sorting each half, and then merging 

the sorted halves back together. 

Steps: 

1. Split the Array: Keep dividing the array into halves until each subarray has only one 

element. 

2. Merge: Start merging the subarrays back together in sorted order. 

 

Example: Initial Array: [70, 50, 10, 60, 20]; Find Mid Element=10; 

 

 

 

 

  Left Array     Right Array 

       

 

                 Split   Split 

 

 

           Split       Split 

 

Sort & Merge       Sort & Merge 

 

       

              Sort & Merge 

 

 

 

 

 

70 50 10 60 20 

70 50 10 60 20 

70 50 10 

50 10 
70 

60 20 

20 60 50 70 10 

10 50 70 

10 20 50 60 70 
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Step 1: Split into Left & Right Sub Array: Left: [70, 50, 10] & Right: [60, 20] until array is splitted 

into individual element. 

 

Step 2: Sort &Merge: all individual elements is sorted and merged till entire element is Sorted 

Final Sorted Array: [10, 20, 50, 60, 70] 

 

Algorithm: 

i). Algorithm Mergesort(A[0…n-1],low,high) 

{ 

if(low<high) 

{ 

mid=(low+high)/2 

Mergesort(A,low,mid) 

Mergesort(A, mid+1,high) 

Combine(A,low,mid,high) 

} 

} 

ii). Algorithm Combine (A [0…n-1],low,mid,high) 

{ 

k=low 

i=low 

j=mid+1 

while(i<=mid) 

{ 

if(A[i]<=A[j]) 

{ 

Temp[k]=A[i] 

i++ 

k++ 

} 

} Temp[k]=A[j] 

while(j<=high) 

{ 

if(A[j]>=A[i]) 

{ 

Temp[k]=A[j] 

j++ 
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k++ 

} 

} Temp[k]=A[j] 

} 

 

Analysis: 

Time Complexity: 

1.Best Case: 

 Even in the best case (already sorted input), Merge Sort still divides the array and merges it 

back in O (n log n) time. 

2.Average Case: 

 On average, Merge Sort divides the array into two halves and merges them back, resulting in 

O (n log n) time complexity. 

3.Worst Case: 

 Even in the worst case (when the input is reversed), Merge Sort divides the array and merges 

them back in O (n log n) time. 

By Recurrence Relation: 

Step1: Find Recurrence Relation: 

   Time to Sort Right Sub Array 

   T(n)= T(n/2) + T(n/2) + n        Time to Partition the array 

   Time to Sort Left Sub Array 

Step 2: Consider the above Recurrence Relation; 

T(n)= T(n/2) + T(n/2) + n 

T(n)=2* T(n/2) + n  1 

Applying Equation 1 in general recurrence relation: T(n)=a* T(n/b) + f(n) 

Now, a=2; b=2;  

f(n)=n= θ(n^d) = θ(n^1) 

Therefore d=1; 

Finding a=(b^d): 

2= (2^1) 

2=2(Both are equal) 
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Step 3: It can be Solved using Master Theorem or Substitution Method. Here we use Master 

Theorem. 

Since a=(b^d); Apply Case 2 in Master Theorem; We get, 

T(n)= θ((n^d) * log n) [since d=1] 

        = θ((n^1) * log n) = θ ((n log n) 

Therefore T(n)= θ ((n log n) 

Space Complexity: 

 O(n) because of the additional space required to store the temporary subarrays during 

the merging process. 

Topic 6: Binary Search  

(using Divide & Conquer Approach) 

 Binary search is an efficient algorithm for finding an item from a list or array. Elements in 

array must be sorted before searching is done. 

 Elements to be searched is ‘Key’. Low is First element. High is Last element. 

 Find Mid Element= (low + high)/2. Key Element and Mid Element are Compared. 

 If Key element is less than Mid Element, Search is done in Left Sublist and If Key element is 

greater than Mid Element, Search is done in Right Sublist. The Process is repeated until Key 

element is Matched. 

Example:   low        mid             high 

10 20 30 40 50 60 70 

   

Key Element=60;  

Step 1: 

Find Middle Element: 

mid= (low +high)/2 

       = (10+70)/2 

       =80/2=40; mid=40 

Step 2: 

Check A[mid]=Key; 40<60; Key is not mid element;  

Step 3:  

Key is Greater than mid. So, Search elements after mid (Right Sublist). 

 

 

    low  mid  high  

50 60 70 
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Step 4: 

Compare [mid]=Key; Key (60) is matched with mid.  

Algorithm : 

Algorithm BinSearch(A[0..n-1], Key) 

{ 

low=0 

high=n-1 

while(low<high) 

{ 

mid=(low+high)/2 

if(key==A[mid]) 

return mid 

else 

if(key<A[mid]) 

BinSearch(A[], Key,low,mid-1)//Search Left Sublist 

Else 

BinSearch(A[], Key,mid+1,high)//Search Right Sublist 

} 

} 

Analysis: 

Time Complexity T(n): 

1.Best Case: 

 O(1); When Middle Element is key.  

2.Average Case and Worst Case: 

 O ( log n) ; When Key Element is present at one of the end or not present. 

By Recurrence Relation: 

Step1: Find Recurrence Relation: 

   Constant Time to Compare element 

   T(n)= T(n/2) + O(1)   

   Time to divide the sublist 

Binary Search divide the problem into two halves and process only one half in each step. 

Step 2: Apply Master Theorem: 

T(n)= T(n/2) + O(1) 

T(n)=1* T(n/2) +O(n^0) [since (n^0)=1]  1 
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Applying Equation 1 in general recurrence relation: T(n)=a* T(n/b) + f(n) 

Now, a=1; b=2; 

 f(n)=(n^0)=(n^d) 

 [therefore d=0]; 

Finding a=(b^d); 

1=(2^0) (since 2^0=1) 

1=1;(Both are equal) 

Step 3: It can be Solved using Master Theorem or Substitution Method. Here we use Master 

Theorem. 

Since a=(b^d); Apply Case 2 in Master Theorem; We get, 

T(n)= θ((n^0) * log n) [since d=0] 

        = θ((1) * log n) = θ (log n) 

Therefore T(n)= θ (log n) 

 

Space Complexity S(n): 

O(1) — Binary search is an in-place algorithm that does not require additional memory beyond the 

input array. So It is considered Constant. 

      Quick Review 

Analysis of Brute Force Algorithms 

Algorithm Time Complexity Space Complexity 

 Best 

Case 

Average 

Case 

Worst 

Case 

 

Selection Sort O(n²) O(n²) O(n²) O(1) 

Bubble Sort O(n) O(n²) O(n²) O(1) 

Linear Search O(1) O(n) O(n) O(1) 
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Analysis of Divide & Conquer Algorithms 

Algorithm Time Complexity Space Complexity 

 Best 

Case 

Average 

Case 

Worst 

Case 

 

Merge Sort O(n log n) 
O(n log 

n) 

O(n log 

n) 
O(n) 

Quick Sort O(n log n) 
O(n log 

n) 
O(n^2) O(log n) 

Binary Search O(log n) O(log n) 
O(log 

n) 
O(1) 

 


	Recursively Apply Quick Sort:

