
COURSE NAME : 23CSB201 & Object Oriented Programming

II YEAR/ III SEMESTER

UNIT – II  INHERITANCE, PACKAGES, INTERFACE 

Topic: Method Overloading & Object as Argument

Dr.P.Poonkodi

Assistant Professor(SG)

Department of Computer Science and Technology

SNS COLLEGE OF ENGINEERING
Coimbatore-107

An Autonomous Institution



Introduction
• Method overloading is a feature in Object-Oriented Programming (OOP) where 

multiple methods in the same class share the same name but have different 
parameters (different number, type, or order of parameters). 

• It allows flexibility and improves code readability

Object Oriented Programming / Dr.P.Poonkodi / CST/SNSCE 210-03-2025



Scenario
• A university enrollment system needs a way to register 

students. Students can register using different information:

• Basic registration – Only with Student ID.

• Registration with name – Student ID and Name.

• Full registration – Student ID, Name, and Course.

• Registration with scholarship – Student ID, Name, Course, 
and Scholarship details.

Object Oriented Programming / Dr.P.Poonkodi / CST/SNSCE 310-03-2025



Scenario
• A university enrollment system needs a way to register 

students. Students can register using different information:

• Basic registration – Only with Student ID.

• Registration with name – Student ID and Name.

• Full registration – Student ID, Name, and Course.

• Registration with scholarship – Student ID, Name, Course, 
and Scholarship details.

Object Oriented Programming / Dr.P.Poonkodi / CST/SNSCE 410-03-2025



Example
class Student 

{    

private int studentId;    

private String name;    

private String course;    

private double scholarshipAmount;    

// Method 1: Register with only student ID    

public void register(int studentId) 

{        

this.studentId = studentId;        

System.out.println("Student registered with ID: " + studentId);  
}

Object Oriented Programming / Dr.P.Poonkodi / CST/SNSCE 510-03-2025



Example
// Method 2: Register with student ID and Name    

public void register(int studentId, String name) 

{        

this.studentId = studentId;        

this.name = name;        

System.out.println("Student registered: " + name + " (ID: " + 
studentId + ")");    

}    

Object Oriented Programming / Dr.P.Poonkodi / CST/SNSCE 610-03-2025



Example
// Method 3: Register with student ID, Name, and Course    

public void register(int studentId, String name, String course) 

{        

this.studentId = studentId;        

this.name = name;        

this.course = course;        

System.out.println("Student registered: " + name + " (ID: " + 
studentId + ") for course: " + course);    

}

Object Oriented Programming / Dr.P.Poonkodi / CST/SNSCE 710-03-2025



Example
// Method 4: Register with all details including Scholarship    

public void register(int studentId, String name, String course, double 
scholarshipAmount) 

{        

this.studentId = studentId;        

this.name = name;        

this.course = course;        

this.scholarshipAmount = scholarshipAmount;        
System.out.println("Student registered: " + name + " (ID: " + 
studentId + ") for course: " + course+ " with scholarship of $" + 
scholarshipAmount);    

}

} Object Oriented Programming / Dr.P.Poonkodi / CST/SNSCE 810-03-2025



Example
public class StudentRegistration
{ 

public static void main(String[] args) 
{ 

Student student1 = new Student(); 
student1.register(101); 
Student student2 = new Student(); 
student2.register(102, "Alice"); 
Student student3 = new Student(); 
student3.register(103, "Bob", "Computer Science"); 
Student student4 = new Student(); 
student4.register(104, "Charlie", "Engineering", 2000.0); 

} 
} Object Oriented Programming / Dr.P.Poonkodi / CST/SNSCE 910-03-2025



Advantages
• Flexibility: 

Students can register using different sets of details
• Improved Readability: 

The method name register remains the same, making it easier 
to understand

• Code Reusability: 
No need to create multiple method names like 
registerWithID(), registerWithName(), etc

• Better Maintainability: 
If logic changes in registration, updating one method is easier 
than modifying multiple methods

Object Oriented Programming / Dr.P.Poonkodi / CST/SNSCE 1010-03-2025



Object as Argument
• objects can be passed as arguments to methods
• This allows methods to work on entire objects rather than just 

individual values
• It helps in data encapsulation, code reusability, and modular 

programming

Object Oriented Programming / Dr.P.Poonkodi / CST/SNSCE 1110-03-2025



Scenario
• A university wants a system where:

• A student’s details (ID, Name, and Marks) are passed to a method.

• A method calculates and displays the student’s grade based on marks.

Object Oriented Programming / Dr.P.Poonkodi / CST/SNSCE 1210-03-2025



Exampleclass Student 

{    

int studentId;    

String name;    

double marks;    

// Constructor    

Student(int studentId, String name, double marks) 

{        

this.studentId = studentId;        

this.name = name;        

this.marks = marks;    
}

Object Oriented Programming / Dr.P.Poonkodi / CST/SNSCE 1310-03-2025



Example
// Method to display student details 

void display() 

{ 

System.out.println("Student ID: " + studentId + ", Name: " 

+ name + ", Marks: " + marks); 

}

Object Oriented Programming / Dr.P.Poonkodi / CST/SNSCE 1410-03-2025



Example
// Method that accepts a Student object as an argument and calculates grade    

void calculateGrade(Student student) 

{        

char grade;        

if (student.marks >= 90) 

{            

grade = 'A';        

} 

else if (student.marks >= 80) 

{            

grade = 'B';        

}
Object Oriented Programming / Dr.P.Poonkodi / CST/SNSCE 1510-03-2025



Example
// Method that accepts a Student object as an argument and calculates grade    

else if (student.marks >= 70) 

{            

grade = 'C';        

} 

else if (student.marks >= 60) 

{            

grade = 'D';        

} 
else 

{            

grade = 'F';        

}        

System.out.println(student.name + " received grade: " + grade);    

}
Object Oriented Programming / Dr.P.Poonkodi / CST/SNSCE 1610-03-2025



Example
public class StudentGradeSystem

{    

public static void main(String[] args) 

{        
// Creating Student objects        

Student student1 = new Student(101, "Alice", 85);        

Student student2 = new Student(102, "Bob", 92);                

// Displaying student details  

student1.display();        

student2.display();        

// Calculating grade by passing object as an argument 

student1.calculateGrade(student1);        

student2.calculateGrade(student2);        

}

} Object Oriented Programming / Dr.P.Poonkodi / CST/SNSCE 1710-03-2025



Key Takeaways
1. Passing Objects as Arguments: 

The calculateGrade(Student student) method takes a Student object 
as an argument and determines the grade

2.  Encapsulation & Code Reusability: 

Instead of writing separate methods for each student, we pass student 
objects, making the code more reusable

3.  Real-World Use Cases: 

This approach is widely used in banking applications (passing account 
objects), e-commerce (passing order objects), and healthcare systems 
(passing patient objects) 

Object Oriented Programming / Dr.P.Poonkodi / CST/SNSCE 1810-03-2025



References

Object Oriented Programming / Dr.P.Poonkodi / CST/SNSCE 1910-03-2025

• Java : the complete Reference ( Eleventh Edition), Herbert 
Schildt, 2018.



10-03-2025 20/22Object Oriented Programming / Dr.P.Poonkodi / CST/SNSCE


