
Unit II

Threads, Multithreading Models



Multithreaded Server Architecture

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS



Benefits

• Responsiveness – may allow continued execution if part of process is 

blocked, especially important for user interfaces

• Resource Sharing – threads share resources of process, easier than shared 

memory or message passing

• Economy – cheaper than process creation, thread switching lower overhead 

than context switching

• Scalability – process can take advantage of multiprocessor architectures

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS



Multicore Programming

• Multicore or multiprocessor systems putting pressure on programmers, challenges 
include:

• Dividing activities

• Balance

• Data splitting

• Data dependency

• Testing and debugging

• Parallelism implies a system can perform more than one task simultaneously

• Concurrency supports more than one task making progress

• Single processor / core, scheduler providing concurrency

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS



Multicore Programming 
(Cont.)

• Types of parallelism 

• Data parallelism – distributes subsets of the same data across multiple 

cores, same operation on each

• Task parallelism – distributing threads across cores, each thread 

performing unique operation

• As # of threads grows, so does architectural support for threading

• CPUs have cores as well as hardware threads

• Consider Oracle SPARC T4 with 8 cores, and 8 hardware threads per core

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS



Concurrency vs. Parallelism

Concurrent execution on single-core system:

Parallelism on a multi-core system:

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS



Single & Multithreaded Processes

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS



Amdahl’s Law

• Identifies performance gains from adding additional cores to an application that has 
both serial and parallel components

• S is serial portion

• N processing cores

• That is, if application is 75% parallel / 25% serial, moving from 1 to 2 cores results 
in speedup of 1.6 times

• As N approaches infinity, speedup approaches 1 / S

Serial portion of an application has disproportionate  effect on performance 
gained by adding additional cores

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS



User Threads and Kernel 
Threads

• User threads - management done by user-level threads library

• Three primary thread libraries:

•  POSIX Pthreads

•  Windows threads

•  Java threads

• Kernel threads - Supported by the Kernel

• Examples – virtually all general purpose operating systems, including:

• Windows  ,  Solaris  , Linux ,Tru64 UNIX ,Mac OS X

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS



Multithreading Models

• Many-to-One

• One-to-One

• Many-to-Many

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS



Many-to-One

• Many user-level threads mapped to single kernel 

thread

• One thread blocking causes all to block

• Multiple threads may not run in parallel on 

muticore system because only one may be in 

kernel at a time

• Examples:

• Solaris Green Threads

• GNU Portable Threads

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS



One-to-One

• Each user-level thread maps to kernel thread

• Creating a user-level thread creates a kernel thread

• More concurrency than many-to-one

• Number of threads per process sometimes restricted due to overhead

• Examples

• Windows

• Linux

• Solaris 9 and later

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS



Many-to-Many Model

• Allows many user level threads to be mapped 

to many kernel threads

• Allows the  operating system to create a 

sufficient number of kernel threads

• Windows  with the ThreadFiber package

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS



Two-level Model

• Similar to M:M, except that it allows a user thread to be bound to 

kernel thread

• Examples

• IRIX

• HP-UX

• Tru64 UNIX

• Solaris 8 and earlier

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS



Thread Libraries

• Thread library provides programmer with API for creating and 

managing threads

• Two primary ways of implementing

• Library entirely in user space

• Kernel-level library supported by the OS

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS



Pthreads

• May be provided either as user-level or kernel-level

• A POSIX standard (IEEE 1003.1c) API for thread creation and 

synchronization

• Specification, not implementation

• API specifies behavior of the thread library, implementation is up to 

development of the library

• Common in UNIX operating systems (Solaris, Linux, Mac OS X)

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS



Java Threads

• Java threads are managed by the JVM

• Typically implemented using the threads model provided by underlying OS

• Java threads may be created by:

• Extending Thread class

• Implementing the Runnable interface

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS


	Slide 1:                                     Unit II   Threads, Multithreading Models   
	Slide 2: Multithreaded Server Architecture
	Slide 3: Benefits
	Slide 4: Multicore Programming
	Slide 5: Multicore Programming (Cont.)
	Slide 6: Concurrency vs. Parallelism
	Slide 7: Single & Multithreaded Processes
	Slide 8: Amdahl’s Law
	Slide 9: User Threads and Kernel Threads
	Slide 10: Multithreading Models
	Slide 11: Many-to-One
	Slide 12: One-to-One
	Slide 13: Many-to-Many Model
	Slide 14: Two-level Model
	Slide 15: Thread Libraries
	Slide 16: Pthreads
	Slide 17: Java Threads

