
UNIT II

IMPLICIT THREADING ,
THREADING ISSUES

Implicit Threading

• Growing in popularity as numbers of threads increase, program correctness

more difficult with explicit threads

• Creation and management of threads done by compilers and run-time libraries

rather than programmers

• Three methods explored

• Thread Pools

• OpenMP

• Grand Central Dispatch

• Other methods include Microsoft Threading Building Blocks (TBB),

java.util.concurrent package
Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Thread Pools

• Create a number of threads in a pool where they await work

• Advantages:

• Usually slightly faster to service a request with an existing thread than create
a new thread

• Allows the number of threads in the application(s) to be bound to the size of
the pool

• Separating task to be performed from mechanics of creating task allows
different strategies for running task

• Windows API supports thread pools:

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Grand Central Dispatch

• Apple technology for Mac OS X and iOS operating systems

• Extensions to C, C++ languages, API, and run-time library

• Allows identification of parallel sections

• Manages most of the details of threading

• Block is in “^{ }” - ˆ{ printf("I am a block"); }

• Blocks placed in dispatch queue

• Assigned to available thread in thread pool when removed from queue

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Grand Central Dispatch

• Two types of dispatch queues:

• serial – blocks removed in FIFO order, queue is per process, called main

queue

• Programmers can create additional serial queues within program

• concurrent – removed in FIFO order but several may be removed at a time

• Three system wide queues with priorities low, default, high

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Threading Issues

• Semantics of fork() and exec() system calls

• Signal handling

• Synchronous and asynchronous

• Thread cancellation of target thread

• Asynchronous or deferred

• Thread-local storage

• Scheduler Activations

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Semantics of fork() and exec()

• Does fork()duplicate only the calling thread or all threads?

• Some UNIXes have two versions of fork

• exec() usually works as normal – replace the running process

including all threads

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Signal Handling

• Signals are used in UNIX systems to notify a process that a particular event has
occurred.

• A signal handler is used to process signals

1. Signal is generated by particular event

2. Signal is delivered to a process

3. Signal is handled by one of two signal handlers:

1. default

2. user-defined

• Every signal has default handler that kernel runs when handling signal

• User-defined signal handler can override default

• For single-threaded, signal delivered to process

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Signal Handling (Cont.)

• Where should a signal be delivered for multi-threaded?

• Deliver the signal to the thread to which the signal applies

• Deliver the signal to every thread in the process

• Deliver the signal to certain threads in the process

• Assign a specific thread to receive all signals for the process

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Thread Cancellation

• Terminating a thread before it has finished

• Thread to be canceled is target thread

• Two general approaches:

• Asynchronous cancellation terminates the target thread immediately

• Deferred cancellation allows the target thread to periodically check if it
should be cancelled

• Pthread code to create and cancel a thread:

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Thread Cancellation (Cont.)

• Invoking thread cancellation requests cancellation, but actual cancellation
depends on thread state

• If thread has cancellation disabled, cancellation remains pending until thread
enables it

• Default type is deferred

• Cancellation only occurs when thread reaches cancellation point

• I.e. pthread_testcancel()

• Then cleanup handler is invoked

• On Linux systems, thread cancellation is handled through signals

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Thread-Local Storage

• Thread-local storage (TLS) allows each thread to have its own copy of data

• Useful when you do not have control over the thread creation process (i.e., when

using a thread pool)

• Different from local variables

• Local variables visible only during single function invocation

• TLS visible across function invocations

• Similar to static data

• TLS is unique to each thread

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

	Slide 1: Unit iI Implicit Threading , Threading Issues
	Slide 2: Implicit Threading
	Slide 3: Thread Pools
	Slide 4: Grand Central Dispatch
	Slide 5: Grand Central Dispatch
	Slide 6: Threading Issues
	Slide 7: Semantics of fork() and exec()
	Slide 8: Signal Handling
	Slide 9: Signal Handling (Cont.)
	Slide 10: Thread Cancellation
	Slide 11: Thread Cancellation (Cont.)
	Slide 12: Thread-Local Storage

